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Foreword

Professor Naum Ya. Vilenkin is not only a distinguished mathematician but
also a gifted popularizer of significant mathematics. His “Stories about Sets”
(Academic Press, 1968) ranged from a discussion of infinities to a discussion of
the dimension of a manifold. His present book on combinatorics is a leisurely
tour which takes the reader from very simple combinatorial problems to recur-
rence relations and generating functions and requires no more than a high school
background in mathematics. The book includes a collection of hundreds (439)
of problems with solutions.

We feel that Professor Vilenkin’s book on combinatorics is another proof of
the proposition that it is possible to instruct without boring.

We wish to thank Dr. D. W, T. Bean of York University in Toronto for
pointing out a number of errors in the manuscript of the translation.

THE TRANSLATORS






Preface to the Russian Edition

People engaged in almost any area of activity find it necessary to solve problems
which require consideration of various arrangements of letters, digits, and other
objects. The shop foreman assigns various types of jobs to operators of available
machine tools, the agronomist assigns crops to be grown on different fields,
the school director plans the curriculum, the research chemist investigates the
possible connections between various atoms and molecules, the linguist con-
siders the possible meanings of letters of an unknown alphabet, and so on. The
branch of mathematics concerned with the number of different arrangements of
given objects subject to various restrictions is called combinatorics.

Combinatorics goes back to the 16th century. At that time games of chance
played an important role in the lives of members of the privileged classes.
People played cards and dice* and won or lost gold and diamonds, palaces and
estates, thoroughbreds and precious ornaments, Lotteries were very popular.
It is not surprising that in the beginning combinatorial problems were primarily
concerned with games of chance; with problems such as the number of ways
of obtaining a certain score when throwing two or three dice, or the number
of ways of getting two kings in a certain card game. These and similar problems
arising from games of chance were the moving force behind the development
of combinatorics as well as probability.

The Italian mathematician Tartaglia was among the first to consider the
number of outcomes associated with a game of dice. Tartaglia constructed
a table of possible scores in a game with » dice without, however, taking into
consideration the fact that the same score could be obtained in different ways
(for example, 1 +3 +4 =4 + 2 + 2).

In the 17th century the French scholars Pascal and Fermat pursued theoretical
studies of combinatorial problems. The starting point of their studies was
likewise games of chance. A problem of great significance connected with games
of chance was the problem of division of stakes which the Chevalier de Méré,

* In a game of dice the players threw a few cubes whose faces were marked 1 through 6.
The winner was the person with the largest score. There existed variants of this game.

Xi



xii Preface to the Russian Edition

an inveterate gambler, put before his friend Pascal: T'o win a “match” in the
game of pitch-and-toss one must win six games. Suppose the game is broken
off after one player has won five games and his opponent has won four games;
how should the stakes be divided ? It was clear that division in the ratio 5-4 was
ynfair. Pascal used combinatorial methods and solved the problem in the general
case when the players must yet win 7 and s games, respectively, to win the match.
Another solution of the problem was given by Fermat.

Further development of combinatorics was due to Jacob Bernoulli, Leibniz,
and Euler, They were mostly concerned with applications to various games
(lotto, solitaire, and so on). The rapid development of combinatorics in recent
years is connected with the growth of interest in problems of finite mathe-
matics. Combinatorial methods are used to solve transportation problems (in
particular, problems of composition of timetables) as well as in industrial
planning and in scheduling production. Combinatorics is linked to linear
programming, statistics, and so on. Combinatorics is also used in coding and
decoding and in other areas of information theory.

Combinatorial methods play an important role in certain areas of pure
mathematics such as the theory of groups and representation theory, foundations
of geometry, nonassociative algebras, and so on.

There are few books on combinatorics in Russian. Outside of elementary
books exemplified by public school textbooks, there are only translations of
works by M. Hall (“Combinatorial Theory”’, Ginn, Boston, 1967}, J. Riordan
(““An Introduction to Combinatorial Analysis,” Wiley, New York, 1958), and
H. J. Ryser (““Combinatorial Mathematics,” Carus Monograph No. 14, Wiley,
New York, 1963).

The present book is intended as an interesting and elementary introduction
to combinatorics. In spite of the elementary nature of the book, we consider
some rather difficult combinatorial problems and introduce the reader to
recurrence relations and generating functions.

The first chapter deals with general rules of combinatorics, the rule of sum
and the rule of product. The second chapter deals with samples, permutations,
and combinations; this traditional high school material is illustrated with some
interesting examples. In the third chapter we study combinatorial problems in
which the arrangements are subject to various restrictions. In the fourth chapter
we consider (ordered and unordered) partitions of numbers and discuss geometric
methods used in combinatorics. The fifth chapter is devoted to random walk
problems and to a discussion of a number of variants of the arithmetical triangle.
In the sixth chapter we discuss recurrence relations. In the seventh chapter we
discuss generating functions, and, in particular, the binomial expansion.

The book contains over 400 (solved) problems taken from different sources.
Many of the problems come from the books by W. A. Whitworth (“Choice
and Chance,” Hafner, New York, 1959), J. Riordan (“An Introduction to
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Combinatorial Analysis”), A. M. Yaglom and I. M. Yaglom (‘“Challenging
Mathematical Problems with Elementary Solutions,” Holden-Day, San
Francisco, 1967), from collections of problems given at mathematical olympiads,

and so on.
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General Rules of Combinatorics

Superstitious Cyclists

The president of a cyclist club looked at the twisted wheel of his bicycle and
exclaimed bitterly: “Another 8! And all because the number on my membership
card is 008. And now not a month passes without a wheel of my bike turning into
a figure 8. The only thing to do is to change that card number and the card
numbers of all the other club members. Otherwise they’ll say I am superstitious.
When numbering the new cards I'll make sure not to use the digit 8.”

-4

¥
At =)

No sooner said than done. The next day each member of the club got a new
card, How many members were in the club if all 3-digit numbers not containing the
digit 8 were used to number the new cards? (For example, 000 was used, but 836 was
not used.)

To solve this problem we first ask for the number of 1-digit numbers other
than 8. Clearly, these are the nine numbers 0, 1, 2, 3, 4, 5, 6, 7, 9. Next we find
all the 2-digit numbers which do not contain the digit 8. These numbers arise

1



2 I. General Rules of Combinatorics

if we write down one of the nine admissible digits and then another, Hence for
every admissible 1-digit number we get 9 two-digit numbers. And since there are
9 such 1-digit numbers, there are 9 + 9 = 81 “eight-free”” 2-digit numbers.
Specifically, the numbers in question are:

00, 01, 02, 03, 04, 05, 06, 07, 09
10, 11, 12, 13, 14, 15, 16, 17, 19
20, 21, 22, 23, 24, 25, 26, 27, 29
30, 31, 32, 33, 34, 35 36, 37, 39
40, 41, 42, 43, 44, 45, 46, 47, 49
50, 51, 52, 53, 54, 55, 56, 57, 59
60, 61, 62, 63, 64, 65 66, 67, 69
70, 71, 72, 73, 74, 75, 76, 71, 79
90, 91, 92, 93, 94, 95, 96, 97, 99

If we follow each of the 92 = 81 “‘eight-free’’ 2-digit numbers with one of the
nine admissible digits, we obtain 92 -+ 9 = 93 = 729 admissible 3-digit numbers.
This means that the club had 729 members. It is not difficult to see that the
number of 4-digit ““eight-free’’ numbers is 9* = 6561.

The members of another cyclist club were even more superstitious, Since the
the digit O resembles an elongated wheel, they decided to use only the eight
digits 1, 2, 3, 4, 5, 6, 7, 9. How many members were in the club if the membership
cards were numbered with all the admissible 3-digit numbers ?

This problem is similar to the previous problem except that instead of nine we

have eight admissible digits. This means that the number of members was
8% = 512.

Samples with Repetitions

The problem about the cyclists is of the following type: We are given objects
of n types. We make up all possible arrangements of % such objects. In making
up an arrangement, we are free to use objects of the same type. T'wo arrangements
are regarded as different if they contain different numbers of elements of a
certain type or if their elements are differently ordered. We are required to
compute the number of such arrangements.

Arrangements of this type are called k-samples with repetitions of elements of
n types. The number of such arrangements is denoted by the symbol 4% . In the
first problem about cyclists, we dealt with elements of nine types (all the digits
other than 8}, and each sample (that is, each admissible card number) consisted
of three elements. We saw that in that case the number of samples was 45 = 93,
It is natural to expect that if there are n types of elements and each sample
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involves k elements, then the number of samples with repetitions is #*. A formal
proof follows.

We show that the number of k-samples with repetitions of elements of n types is equal to

4y = n", (1)

We keep n fixed and use induction on k, the number of elements in the sample. For
k = 1, every sample consists of 1 element, and to obtain different samples we must take
elements of different types. Since there are » types of elements, the number of the samples
in question is #. Thus, in accordance with Eq. (1), we have A = n.

Now we suppose that the equality 4*~* = #*~* holds, and we consider k-samples with
repetitions, All such samples can be obtained as follows: Starting with any (k — 1)-
sample (a, ,..., ax—;) we add on to it an element a, of one of the # types. The result is
the k-sample (&, ,..., ax—; , @). It is clear that each (¢ — 1)-sample gives rise to as many
k-samples as there are types of elements, namely, n. Also, this procedure for generating
k-samples does not leave out any k-sample nor does it yield the same k-sample twice
Gf (@) yeury @eq) 7= (b1 pouey Br—y) O @ # by, then (a, ..., @) F# (b, ,..., b)), It follows that
there are 7 times as many k-samples with repetitions of elements of n types as there are
(k — 1)-samples with repetitions of elements of 7 types, that is, Ak = nfff,‘l. Therefore

This proves Eq. (1) for all values of k.

Equation (1) occurs in many situations. A few of these situations are discussed
below.

Systems of Numeration

In recording numbers, we usually make use of the base ten. We can also make
use of other bases such as the base two, the base three, and so on. If we use »
as a base, then in recording numbers we use 7 digits.*With n as a base, let us
compute the number of natural numbers (at this point it is convenient to regard
zero as a natural number) which can be recorded using exactly & digits. If we
allow a zero in the first position, then every number consisting of & digits can
be viewed as a k-sample with repetitions of elements of # types. By Formula (1)
there are #* such numbers.

However, in recording a natural number we never start with a zero. Therefore
we must reduce n* by the total number of numbers whose records (to the base 7)
start with a zero. If we remove in each of these numbers the leading zero, then
we obtain a number consisting of K — 1 digits (conceivably starting with zero).

* The term “‘digit’’ refers to each of the numbers 0, 1,..., n — 1.
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By Formula (1), there are #*~! such numbers. It follows that if we use the base 7,
then there are
n* — nk-1 = p*-l(n — 1)

numbers consisting of & digits.

For example, in the decimal system, there are 10% -+ 9 = 9000 four-digit num-
bers; in fact, 9000 is the difference between the 10,000 numbers from 0 to 9999
and the 1000 numbers from 0 to 999.

The above result can be derived in another way. If we use the base #n, then, in recording
a number made up of k digits, we can take as the first entry one of n — 1 digits, and for
each of the 8 — 1 succeeding entries one of the 7 digits. It follows readily that there are
(n — 1)#*~! required numbers.

Combination Lock

Safes and vaults are locked by means of combination locks which open only
after one has dialed a “secret word.” Such a word is dialed by means of one or
more disks on which are stamped letters (or numbers). Suppose that there
are 12 letters on a disk and the secret word consists of 5 letters. How many times
can a man who does not know the secret word fail to dialit?

In view of Formula (1) the total number of combinations is

125 = 248,832,

This means that the maximal number of failures is 248,831. Incidentally, safes
are usually constructed so that after the first failure to open them an alarm is
sounded.

The Morse Code

The Morse code is used to transmit telegrams. In this code letters, numbers,
and punctuation marks are denoted by means of dots and dashes. The number of
dots and dashes used to denote a particular letter ranges from one to five.

Why go up to five ? Is it not possible to transmit all messages using blocks of,
say, no more than four symbols ? It turns out that this is impossible, This con-
clusion is implied by the formula for the number of samples with repetitions. In
fact, Formula (1) shows that 4] = 2, that is, that using 1 dot or dash we can
transmit only 2 letters. Using dots and dashes in groups of 2, 3, and 4, we can
transmit 22 = 4, 23 = 8, and 2% = 16 letters, respectively. While it is true that

24+4+8+4+16 =30
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and the number of letters in the Latin alphabet is only 26, there remain numbers
and punctuation marks to be transmitted. This shows that we cannot stop at
blocks of 4 dots and dashes, On the other hand, the use of blocks of 5 dots and
dashes yields an additional 32 symbols for a total of 62. This number is more than
sufficient for the purposes of telegraphy.

Signaling at Sea

At sea one sometimes uses flags for signaling, To each letter of the alphabet
there corresponds a definite position of each of the two flags used by the flagman.
As a rule the flags are on either side of the flagman’s body. However, this is not
always the case, Why the exception ? The answer to this question is found by
consulting the formula for the number of samples with repetitions. Each of the
2 flags can occupy one of 5 positions (up, half way up, out, halfway down and
down). With the flags on either side of the flagman’s body the number of distinct
signals is 47 = 52 = 25. On the other hand, we need 26 signals to represent
the 26 letters in the Latin alphabet and an extra signal to separate words. That
is why some letters are signaled with both flags to one side of the flagman’s
body.

Electronic Computers

Electronic computers can solve a large variety of problems. The same machine
can be used to decipher an inscription in an unknown language, to design a dam,
or to process data on the flight of a rocket. What makes a computer so versatile ?
Mainly the fact that all of these problems can be reduced to operations on
numbers. Still, how can a computer solve so many problems with so many
different numerical data ? How many numbers can one store in a computer ?

To answer this question we consider, by way of an example, the computer
“Arrow.” Its memory consists of 2048 cells each containing 43 binary bits.
Each bit represents 0 or 1. This gives 43 - 2048 > 87,000 different locations,
each of which can be filled in two ways (0 or 1). It follows from Formula (1)
that the number of states of our computer exceeds 2%7-99, The size of this
number boggles the imagination. Suffice it to say that the number of neutrons
which fit into a sphere of radius equal to the distance from the earth to the most
distant of all known nebulae is under 2500,

It would take an army of one hundred thousand typists nine years to print
out all the numbers that can turn up in a single memory cell. (These figures are
based on the assumption that a typist works 7 hours a day and takes 10 seconds
to type a 43-digit number.)



6 I. General Rules of Combinatorics
Genetic Code

A remarkable discovery of 20th century biology was the solution of the
mystery of the genetic code. Scientists managed to explain how hereditary
information is perpetuated. It turned out that such information is carried by the
giant molecules of deoxyribonucleic acid, or DNA. Molecules of DNA differ in
the sequence of four nitrogen bases: adenine, thymine, guanine, and cytosine.
These bases determine the structure of the proteins of the organism. The
proteins are built out of 20 amino acids. The code for each amino acid involves
three nitrogen bases.

The role of the number 3 is clear. The number of 2-samples (with repetitions)
of the 4 nitrogen bases is 42 = 16. On the other hand, the number of amino
acids to be coded is 20. Hence the need for 3-samples. At the same time it would
be interesting to know how nature uses the excess of information represented by
the difference between the available 43 = 64 three-samples and the 20 three-
samples needed for the coding of 20 amino acids.

Each chromosome contains a few tens of millions of nitrogen bases. The
number of arrangements of these bases is fantastically large; specifically, if N is
the number of bases, then the number of arrangements is 4V. A tiny fraction of
these arrangements would account for the variety of all living forms during the
period of existence of life on earth. It must, of course, be borne in mind that
only a tiny fraction of the arrangements which are possible in theory lead to
viable living organisms.

General Rules of Combinatorics

We shall see in the sequel that there are many types of combinatorial problems,
However, most problems can be solved using two basic rules, the rule of sum and
the rule of product.

It is often possible to separate the arrangements under consideration into
several classes so that every arrangement belongs to just one class. Then,
obviously, the total number of arrangements is equal to the sum of the arrangements
in the different classes. This assertion is known as the rule of sum. Another
formulation of this rule states:

If an object A can be selected in m ways and another object B can be selected in
n ways, then the choice of “‘either A or B” can be effected in m + n ways.

When applying the rule of addition in the latter formulation, we must see to it that
none of the ways of choosing A coincides with some way of choosing B (or, to use the
earlier terminology, that no arrangement is common to two classes). Otherwise the rule
of sum is not applicable. In fact, if the number of coincidences is &, then the number of
ways of choosing A or Bism + n— k.
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The second rule, the rule of product, is somewhat more involved. When making
up an arrangement of two elements we may know that the first element can be
selected in mways and that for each choice of the first element the second element
can invariably be selected in 7z ways. Then the pair of elements can be selected in
mn ways. In other words:

If an object A can be selected in m ways and if, following the selection of A, an
object B can be selected in n ways, then the pair (A, B), A first, B second, can be
selected in mn ways.

To prove the rule of product we observe that each of the m ways of choosing 4
can be combined with one of the n ways of choosing B. This gives mn ways for
choosing the pair (4, B).

The rule of product is made particularly clear by T'able 1.

TABLE 1

(4y, By), oy (4y; Bin)
(Az ] B21)! ey (A2 H an)

...............

---------------

(Am ’ Bml): veny (Am ] an)

Here A4,,..., 4,, denote m ways of selecting 4, and B, ,..., B;, denote n
ways of selecting B after A has been selected in the 7th way. It is clear that our
table gives all ways of selecting the pair (4, B) and that it consists of 7z elements.

If the manner of selection of B is independent of the manner of selection of 4,
then in place of Table 1, we obtain the simpler Table 2.

TABLE 2

(4,, By), (A1, By, .., (A1, By)
(Az ' Bl)s (Az ’ Bz): RS (Az ’ Bﬂ)

(Am H Bl): (Am ’ Bz)s (L] (Am » Bﬂ)

Obviously, we may wish to make arrangements of more than 2 elements.
This leads to the following problem:
What is the number of k-arrangements if the first element can be of one of n, different
types, the second of one of n, different types,..., the kth of one of n,, different types.
(Here two arrangements are regarded as different if they have elements of
different types in one or more corresponding positions.)

This problem is solved in the manner of the problem about the cyclists,
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The first element can be selected in #, ways. Each first element can be combined
with an element of one of n, types to give nn, pairs. In turn, each pair can be
combined with an element of one of n, types to give n;nyng triples. Continuing
this process we obtain nn, - n; arrangements of the required type.

In the problem about the cyclists we were required to select 3 elements
(the number of hundreds, the number of tens, and the number of ones). At
each step we could choose one of 9 admissible digits. This gave us9 -9 - 9 = 729
numbers.

The following is a somewhat more difficult problem of this type:

What is the number of ordered triples consisting of 1 of 4 geometric figures,
a letter, and a digit ? (See Fig. 1.)

Fic. 1

There are 4 choices for the first element, 26 for the second, and 10 for the
third. This gives a total of 4 + 26 - 10 = 1040 arrangements.

A Domino Problem

Combinatorial problems in which the number of choices at each step depends
on the elements already selected represent a more difficult class of problems.
One such problem is the following:

In how many ways is it possible to select, in stated order, a pair of matching
dominos out of a total of 287 (T'wo dominos are matched if they have a common
half-face.)

The first domino can be selected in 28 ways. Of these, 7 are “‘doubles”
(that is, 00, 11, 22, 33, 44, 55, 66) and 21 are ‘“‘nondoubles” (for example,
05, 13, and so on). If the first choice is a double, then it can be matched in 6 ways
(for example, if the first choice is 11, then the possible second choices are 01, 12,
13, 14, 15, 16). If the first choice is a nondouble, then it can be matched in 12
ways (for example, if the first choice is 35, then the possible second choices are
03, 13, 23, 33, 34, 36, 05, 15, 25, 45, 55, 56). By the rule of product there are
7 - 6 = 42 choices in the first case and 21 - 12 = 252 choices in the second. By
the rule of sum the total number of choices is 42 + 252 = 294,

Note that, with order taken into account, each pair of dominos is counted
twice (for example, there is the pair 01, 16 and the pair 16, 01). If we ignore the
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order in which the dominos in a pair are picked, then the number of matched
pairs is half of the total just computed, that is, 147.

Crew of a Spaceship

If, as in the previous example, the number of choices at any stage depends on
earlier choices, then it is convenient to represent the process of formation of an
arrangement by means of a “tree.” We start with a point and lead from it as
many segments as there are initial choices (thus each segment corresponds to a
single element). From the endpoint of each segment we lead as many segments
as there are second-stage choices corresponding to the first-stage choices
represented by that segment, and so on. The result of this construction is a tree
from which one can easily read off the number of solutions of our problem. An
illustration follows.

When selecting the crew of a spaceship it is necessary to consider the psycho-
logical compatibility of the prospective astronauts under conditions of space
travel, It may well happen that individually acceptable candidates may not be
suited for the long trip together. Now let us suppose that we are to select a
3-man crew—a commander, an engineer, and a doctor—for a spaceship. Let
a,,ds, das,a, denote 4 candidates for the post of commander; &, ,b,, b;,
3 candidates for the post of engineer; and ¢, , ¢, , ¢, , 3 candidates for the post of
doctor. Tests show that commander a, is compatible with engineers b, , b, and
doctors ¢, , ¢;; commander a, with engineers b, , b, and all the doctors; com-
mander a, with engineers b, , b, and doctors ¢, , ¢5; and commander a, with all
the engineers and doctor ¢, . Also, engineer b, is incompatible with doctor ¢,
engineer b, with doctor ¢, , and engineer b; with doctor ¢, . What is the number of
compatible crews for the spaceship ?

The relevant tree is shown in Fig, 2. This tree shows that there are only ten

b C2
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compatible crews (as against 4 - 3 * 3 = 36 crews which could be chosen if we
ignored compatibility considerations).

A Checkers Problem

We propose to solve the following problem:

In how many ways can one place a black checker and a white checker on a
checkerboard so that the white checker can capture the black checker?

According to the rules of the game, the checkers are placed on the black
squares. T'o capture a checker, one must jump over it to an empty square as
illustrated in Fig. 3.
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Fig, 3

When a checker reaches any of the squares on the opposite extreme side of the
board it becomes a king. A king can jump one or more checkers which share a
diagonal with it and do not occupy terminal squares.

The difficulty of our problem consists in the fact that the number of positions
in which the black checker can be captured by the white checker changes with
the position of the white checker. For example, if the white checker occupies
the square al, then there is only 1 position in which the black checker can be
captured. If the white checker is in the square ¢3, then there are 4 positions in
which the black checker can be captured. Finally, if the white checker is crowned
and occupies the square 48, then the number of positions in which the black
checker can be captured is 6.

It is clear that the simplest way to solve our problem is to mark each position
of the white checker with the corresponding number of positions in which the
black checker can be captured and to add these numbers. The numbers in
question are indicated on the board in Fig. 4a. Their sum is 87. This means that
there are 87 ways of placing the two checkers.
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Interchanging the roles of the checkers in the statement of our problem has
no effect on the answer. On the other hand, the number of ways in which one can
place a white checker and a black checker on a checker board so that each checker
can capture the other is less than 87. For example, if the white checker is at the
edge of the board, then it cannot be captured regardless of the position of the
black checker. Therefore, all black squares at the edge of the board must be
marked with zeros. By marking the remaining squares with appropriate numbers,
as in Fig. 4b, and adding these numbers, we find that the checkers can be placed
in 50 ways.

Finally we compute the number of locations of a black and white pair of
checkers in which neither checker can capture the other. One way of solving this
problem is to proceed as before by placing the white checker on each black
square, computing in each case the number of ways of placing the black checker
so that neither checker can capture the other, and adding the resulting numbers.
However, it is simpler to use the ‘‘teakettle principle’”* and to reduce the
problem to one solved earlier. To do this we first compute the number of ways
of placing a pair of checkers on the checker board. The white checker can be
placed on any one of the 32 black squares. Subsequently, the black checker can
be placed on any one of the unoccupied 31 squares. By the rule of product, the
two checkers can be placed on the board in 32 - 31 = 992 ways. In 87 of the
992 cases the white checker can capture the black checker. In another 87 cases

* A mathematician asked a physicist: “Suppose you were given an empty teakettle and
an unlit gas plate, How would you bring water to a boil?”” “I'd fill the teakettle with
water, light the gas, and set the teakettle on the plate.”” “Right,” said the mathematician,
“and now please solve another problem. Suppose the gas were lit and the teakettle were
full. How would you bring the water to a boil ?”’ ““That’s even simpler. I'd set the teakettle
on the plate.” “Wrong,” exclaimed the mathematician. “The thing to do is to put out the
flame and empty the teakettle, This would reduce our problem to the previous problem!”’

That is why, whenever one reduces a new problem to problems already solved, one
says in jest that one is applying the “teakettle principle.”
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the black checker can capture the white. It is therefore necessary to reject
2 - 87 = 174 cases. At the same time we must note that in so doing we would be
rejecting some cases twice (namely, the cases in which each piece can capture the
other). We know that there are 50 such cases. It follows that the number of cases
in which neither checker can capture the other is

992 — 174 4- 50 = B868.

How Many People Do Not Know a Foreign Language ?

The method we used in the preceding problem is frequently used to solve
combinatorial problems. Here is another illustration of the use of this method.

A certain research institute employs 67 people. Of these 47 speak French, 35 speak
German, and 23 speak both French and German. How many members of the institute
speak neither French nor German?

In order to solve this problem we must partition the set of workers at the
institute into classes without common elements. One such class consists of those
who (in addition to English) speak only French, another consists of those who
speak only German, a third consists of those who speak French and German, and
a fourth consists of those who speak neither French nor German (see Fig. 5).
We know that there are 23 people in the third class. Since there are 47 people
who speak French, it follows that the number of people who speak only French
is 47 — 23 = 24. Similarly, the number of people who speak only German is
35 — 23 = 12. It follows that the number of people who speak at least one of
these languages is 23 4 24 + 12 = 59. Since there are 67 workers at the
institute, the number of people who speak neither Franch nor German is

67 — 59 = 8.
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This result can be written as follows:
8 =67 — (23 + 24 + 12).

Note that 24 is the difference between 47 and 23, and 12 is the difference between
35 and 23. Hence

8 =67 — 23 — (47 — 23) — (35 — 23) = 67 — 47 — 35 + 23.

Now the law of formation is clear. We subtract from the total number of
workers at the institute the number of workers who speak French and the
number of workers who speak German. But this means that some of the workers,
namely, the 23 polyglots who speak both French and German, are “subtracted”’
twice. We remedy this by adding the number 23 and so obtain the number of
people who speak neither French nor German.

We consider a more complicated version of this problem by including one
more language. Suppose that 20 people speak Russian, 12 speak French and
Russian, 11 speak German and Russian, and 5 people speak all three languages.
It is clear that the number of people who speak just French and Russian (and
so no German) is 12 — 5 = 7. The number of people who speak just German
and Russian is 11 — 5 = 6. Hence, the number of people who speak just
Russian is 20 — 7 — 6 — 5 = 2. These 2 people belong to the class of 8 who do
not speak French or German. Hence there are 8 — 2 = 6 people who do not
speak French, German, or Russian.
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This result can be written as follows:

6=8—2=67—47—35+23—(20—7 —6— 5)
=67 —47—354+23—20+(12—5) + (11 —5)+ 5
— 67— 47 —35—20 23 4+ 124+ 11 — 5.

Now the law of formation is clear. T'o begin with, we subtract from the total
number of workers the number of workers who speak at least 1 of the 3 languages.
But then some of the workers, namely, those who speak 2 languages, are
“subtracted” twice. That is why we add the numbers 23, 12, and 11 of workers
who speak different pairs of (and possibly all 3) languages. This, in turn, implies
that the workers who speak all 3 languages are “subtracted” and then ‘“‘added”’
3 times. Since their number must be subtracted from the total, it is necessary
to subtract the number 5.

The Principle of Inclusion and Exclusion

Our example enables us to formulate a general rule. Suppose that we have a
set of N objects and a set of » properties o, , a5 ,..., &, . Some of our N objects
may have none of the n properties and some may have one or more of these
properties. We use the symbol N(aa; - o) to denote the number of objects
which have the properties «;, a;,..., o (and possibly additional properties).
If we wish to stress the fact that we are concerned with elements which lack
a certain property, we prime the corresponding «. For example, N(ojas0g)
denotes the set of elements which have the properties «, and «, and do not have
the property a, (the question of the remaining properties is left open). In line
with this convention, N(e]a, -+ o) denotes the set of elements with none of the
properties oy , ty y.eey 0y

The general rule mentioned in the beginning of this paragraph states that

N(ajog o~ az) = N — N(oy) — N(og) — =- — N(a,)
+ N(oyay) + N(oyoy) + o + N(oyo,) + -+ + N(a,_00,)
— N{wjopoy) — -+ — N{ot 000, _100) + o
+ (—=1)*"N(oyay - o). 2)
The above sum is taken over all combinations of the properties o, ay ,..., &,

(without regarding their order). A summand involving an even number of
properties enters with a plus sign, and a summand involving an odd number of
properties enters with a minus sign. Relation (2) is referred to as the principle of
inclusion and exclusion. This name reflects the fact that we exclude all elements
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which have at least one of the properties o , ay ,..., o, , include all elements
which have at least two of these properties, exclude all elements which have at
least three of these properties, and so on.

To prove Formula (2) we use induction on the number of properties. In the case of
a single property o the formula is obviously true. Namely, an object either has this prop-
erty or does not have it. Therefore,

N() = N— N(®).

Suppose Formula (2) is true for » — 1 properties, that is, suppose that

N(ojo = agq) = N— N(oy) — -+ — N(ota—y)
+ N(uag) + - + N(otp_gny)
— N(aogog) — =+ — N(ap_g0p-205) +
+ (— 1" N(eag = ona). (3)

We may use Formula (3) with any number of objects. In particular, this formula holds
for the set of N(o,) of objects which have the property «, . If we replace N by N(«,) in
Formula (3), we obtain

N(ojoy " op_q0) = N(oy) — N(yo,) — - — N(oy_12,)
+ N(uago,) + - + N(ap_s0n-105)
— N(oyopaga,) — ==
+ (—1)*7! N(agop =+ op_q04) 4

(to get (4) from (3) one takes in each set corresponding to a summand in (3) only those
elements which have the property «,).

Now we subtract Eq. (4) from Eq. (3). The difference between the right-hand side of
Eq. (4) and the right-hand side of Eq. (3) is just the right-hand side of Eq. (2). The
difference between the left-hand side of Eq. (4) and the left-hand side of Eq. (3) is equal to

N(O‘ia'z 051‘1—1) _N(alo‘é 051;—1%)- (5)

Now, N(oo, -+ o,_;) represents the number of objects which do not have the properties
) , Oy yeny Oy and possibly have the property o,. N(ajo, - o,_ja,) represents the
number of objects which do not have the properties «; , @, ,..., ®,_; , but definitely have
the property o, . It follows that the difference in (5) is just the number of objects which
have none of the properties o, oy ,..., %y , @, . In other words,

N(ojoy =+ ay_y) — N(djoiz =+ of_y,) = N(O‘Il% e a o).
This proves (2) for the case when the number of properties is 7.

Having proved the validity of Eq. (2) for » = 1 and the fact that the validity of (2)
for n — 1 implies its validity for n, we conclude that (2) is valid for any number of
properties,

The following is a convenient symbolic representation of Eq. (2):

N o) = N1l —a)(1—5) - (1 — ). (6)

Here a typical term Naf -+ A in the product on the right is to be written as N(aff -+ A),
For example, we write N(afdw) for Nafdw.
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Find the Error!

A certain class monitor stated the following facts about the students: “There
are 45 students in the class. T'wenty-five of the students are boys. Thirty
students are A or B students. Of these 16 are boys. Twenty-eight students take
up sports. Of these 18 are boys and 17 are A or B students. Fifteen boys are
A or B students and take up sports.”

A few days later the class teacher, who happened to teach mathematics, told
the monitor that his data were incorrect. Let us see how the teacher arrived at his
conclusion. To this end we compute the number of girls who do not take up
sports and occasionally get a C (or less). Let «; be the property of being male,
a, the property of being a good (A or B) student, and oy the property of being
interested in sports. We wish to compute N(oqasag). According to the data,

N(w) =25, N(a) =30, Niog) =28, Ny = 16,
N(al%) = 18: N(azas) = 17, N(alazaa) = 15.

By the principle of inclusion and exclusion,
N(oqogag) =45 —25—-30—28 4+ 16 + 18 + 17 — 15 = —2.

This inadmissible result shows that the data are indeed incorrect.

The Sieve of Erastothenes

One of the great mysteries of mathematics is the distribution of primes in
the realm of natural numbers. Sometimes two primes are separated by just one
composite number (for example, 17 and 19, 29 and 31) and sometimes by a
million. By now mathematicians have a fairly good idea as to the number of
primes in the first IV natural numbers. Their computations utilize, among others,
a method due to the Greek mathematician Erastothenes who lived in Alexandria
in the third century B.C.

Erastothenes had very wide scientific interests. These interests included
mathematics, astronomy, and other disciplines. This wide range of interests
invited a measure of superficiality. His contemporaries referred to him, rather
unkindly, as “the universal runner-up” (a runner-up to Euclid in mathematics,
to Hipparchus in astronomy, and so on).

The mathematical problem that concerned Erastothenes was the problem of
finding all the primes in the sequence of natural numbers from 1 to N.
(Erastothenes regarded 1 as a prime. Modern mathematicians find it convenient
to regard 1 as a special number, neither prime nor composite.) In this connection



The Sieve of Erastothenes 17

he invented the following procedure: Remove all multiples of 2 other than 2.
Keep the first remaining natural number exceeding 2, namely, the prime 3.
Remove all multiples of 3 other than 3. Keep the first remaining natural number
exceeding 3, namely, the prime 5. Remove all multiples of 5 other than 5, and
so on. The retained numbers are the primes. Since in Erastothenes’ time people
wrote on wax tablets and punched out rather than erased numbers, the result
of applying Erastothenes’ procedure to a wax tablet was rather like a sieve.
Hence the name “sieve of Erastothenes” given to Erastothenes’ method for
finding primes.

We now compute how many numbers from 1 to 100 are not divisible by 2, 3,
and 35, that is, how many of these numbers remain after the first three steps of
Erastothenes” procedure. The problem is solved using the principle of inclusion
and exclusion.

Let o, be the property of being divisible by 2, o, the property of being divisible
by 3, and «y the property of being divisible by 5. Then oy, denotes divisibility
by 6, a4 divisibility by 10, and oyay divisibility by 15. Also, oja,0y denotes
divisibility by 30. We wish to find out how many numbers from 1 to 100 are not
divisible by 2, 3, or 5, that is, have none of the properties «, , «, , a3 . By Eq. (2)

N(oqogeg) = 100 — N(og) — N(og) — N(og)
+ N(on) 4 N(oyog) + N(wge) — N(ogagms).

To find how many numbers from 1 to N are divisible by #» we must divide N
by # and take the integer part of the quotient. Hence

N(x) = 50, N(w) =33, N(og) = 20,
N(wmoy) = 16,  N(agog) = 10,  N(owag) = 6,  N(ogoses) = 3,

Therefore
N(ogogog) = 32
Thus 32 numbers between 1 and 100 are not divisible by 2, 3, or 5. These
numbers and the numbers 2, 3, 5 are the 35 numbers which remain after the
first three steps of Erastothenes’ procedure.

Of the first 1000 natural numbers, 335 remain after the first three steps of
Erastothenes’ procedure. This follows from the fact that in this case

N(y) = 500, N(op) = 333, N(ag) = 200,
N(oyo,) = 166, N(oy05) = 100, N(ogog) = 66, N(ogag0q) = 33.
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Samples, Permutations, and Combinations

In Chap. I we considered certain general rules for the solution of combinatorial
problems. These rules enable us to solve a large variety of problems. Nevertheless,
certain problems occur so frequently that it is more convenient to solve them
using ready-made formulas instead of general rules. (In geometry, too, it is
frequently more convenient to solve problems by making use of appropriate
theorems instead of relying on the axioms.) One such formula is the formula
developed in the beginning of Chap. I which asserts that the number of k-samples
with repetitions of elements of 7z types is n*. We are about to compute the number
of such samples without repetitions. We begin with the following problem.

Soccer Tournament

Seventeen teams participate in a soccer tournament. The first team is awarded a
gold medal, the second a silver medal, and the third a bronze medal. In how many
ways can the medals be distributed ?

T'his problem can be solved using the rule of product: Any one of the 17 teams
can win the gold medal. Once the gold medal has been awarded to a certain
team, only one of 16 teams can be awarded the silver medal. Similarly, the
bronze medal can go to one of the remaining 15 teams. Application of the rule
of product tells us that the medals can be awarded in 17 - 16 - 15 = 4080 ways.

Samples without Repetitions

The problem just solved belongs to the class of combinatorial problems
involving samples without repetitions. In such problems we are given n distinct

18
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objects and we are required to compute the number of arrangements of these
objects taken % at a time; here two arrangements are regarded as different if
they differ in composition or in the order of their elements.

Arrangements of this type are called k-samples without repetitions. Their
number is denoted by the symbol A% . We note that we can choose the first
element of a k-sample without repetitions in # ways, the second element in
n — 1 ways, the third element in # — 2 ways,..., the kth element inn — & 4 1
ways. By the rule of product, the number of k-samples without repetitions of
n elements is equal to

A% = n(n — 1) - (n — & + 1). (1)

Learned Society

We will apply the formula just derived to solve the following problem:
A certain learned society has 25 members. The members of the society are to elect a
president, a vice president, a secretary, and a treasurer. In how many ways is it
possible to select the 4 officers if no member of the society can hold more than one
office at a time?

Clearly, in this case, a particular person is chosen for a particular office
(Smith for president, Brown for vice president, Clark for secretary, and Wood
for treasurer). In mathematical terms, we are to find the number of samples
(without repetitions) of 25 elements taken 4 at a time. This number is equal to

Al =25 24 - 23 - 22 = 303,600.

Permutations

Two k-samples without repetitions of n objects can differ in composition and
in the order of their elements. However, if & = n, n-samples can differ only in
the order of their elements. n-samples of n objects are called permutations of n
elements or, briefly, n-permutations. (When there is no danger of misunder-
standing, one simply speaks of permutations.)

In other words, n-permutations are samples without repetitions of » elements
which contain all the n elements. One could also say that the permutations of
n elements are all the possible n-arrangements each of which contains every
element once, with two such arrangements differing only in the order of their
elements. The number of n#-permutations is denoted by P, . The value of P,
is obtained from the formula for the number of samples without repetitions.
Specifically,

P,=A4,=nn—1)-2-1. (2)
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In other words, the number of permutations of # objects is equal to the product
of all the natural numbers from 1 to z. This product is denoted by the symbol 7!
(read: n-factorial). In particular, 1! = 1.

In the sequel, we shall make use of the symbol 0!. It is natural to define
0! = 1 (and not 0! = 0).

To see that the definition 0! = 1 is reasonable, note that for n > 1 we have the equality
n! = nn —1)!

For n = 1, the left-hand side of this equality reduces to 1 and the right-hand side to
1 * 0!, If our equality is to hold for » = 1, then we must put 0! = 1.
One more remark: It is not dificult to see that

I nl

An=m- (3)

In fact, the numerator and denominator of the fraction in Eq. (3) contain the factors
1, 2, 3,..., n— k. Reduction gives 4% = n(n—1) --- (n— k + 1) as in Eq. (1) above.

A Rook Problem

In how many ways can 8 rooks be placed on a (conventional) chessboard so
that no rook can attack another ?

Suppose the rooks are placed on the chessboard in the required manner.
Then there is exactly 1 rook in each row and in each column. Let ¢, be the
number of the occupied square in the first row, a, the number of the occupied
square in the second row,..., 4, the number of the occupied square in the eighth
row. Then (a, , a, ,..., ag) is a permutation of the numbers 1, 2,..., 8. (Clearly, the
numbers a, , 4, ,..., a5 are all different; otherwise, 2 rooks would end up in the
same column.) Conversely, to a given permutation q, , 4, ,..., az of the numbers
1, 2,..., 8, there corresponds a placement of the rooks such that no rook can
attack another. (For example, Fig. 6 illustrates a placement of the rooks corre-
sponding to the permutation 7, 5, 4, 6, 1, 3, 2, 8.) Hence, the required number of
placements of the rooks is equal to the number of permutations of the numbers
1, 2,..., 8, that is, Py . Now,

P,=8'=1-2-3-4-5-6-7-8 =40,320.

This means that there are 40,320 ways of placing 8 rooks on a chessboard so that
no rook can attack another.

Using the same reasoning, we can show that there are n! ways of placing n rooks
on an n by n chessboard so that no rook can attack another.

Our problem has an altogether different answer if the # rooks are numbered.
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To find the answer in this case we observe that for each way of placing the
unnumbered rooks there are n! ways of placing the numbered rooks (the result
of permuting the latter). This means that there are (n!)® ways of placing =
numbered rooks on an n X 7 chessboard so that no rook can attack another.

The same answer can be obtained using the rule of product. The first rook can
be placed in one of #% squares. If we ignore the row and column determined by the
occupied square, we are left with an (n — 1) by (» — 1) chessboard with
(n — 1)* squares. This means that the second rook can be placed in one of
(n — 1)? squares. Similarly, the third rook can be placed in one of the (n — 2)?
squares, and so on. In all there are

nin — 1) -+ 12 = (nl)?

ways of placing the rooks.

Linguistic Problems

Linguists study living and dead languages. They are frequently faced with the
task of deciphering inscriptions in unknown languages. Suppose a linguist
found a text employing 26 unknown symbols. The 26 symbols stand for 26 letters
representing 26 sounds. In how many ways can one pair off the sounds and the
letters ?

To answer this question, consider a particular arrangement of the symbols in
the text. Every correspondence between the symbols and the sounds determines
a definite permutation of the sounds. Since there are P,; = 26! permutations
of the 26 sounds, the sounds and the letters can be paired off in 26! ways.

The number 26! is approximately equal to 4 - 102%6. No human being or even
electronic computer can check out which pairing makes sense. Hence the need
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to reduce the number of possibilities. Frequently it is possible to separate symbols
denoting vowels froms symbols denoting consonants (combinations of vowels
and consonants occur more frequently then combinations of vowels or combina-
tions of consonants). Suppose it has been possible to identify 7 symbols for
vowels and 19 symbols for consonants. By what factor does this reduce the number
of possibilities? T'here are 7! ways of arranging the symbols for the vowels, and
19! ways of arranging the symbols for the consonants. This means that the
number of possibilities is now equal to 7! - 19!, In turn, this means that the
number of possibilities has been reduced by a factor of 26!/7! - 19! a» 650,000.
True, this is significant improvement, but 7! - 19! is still a gigantic number.

To reduce the number of possibilities further, one sometimes computes
the frequencies with which individual symbols occur. By comparing these
frequencies with the frequencies of occurrence of letters in languages related
to the language of the text it may be possible to guess the meaning of some
symbols. Other symbols may be identified by comparing the text with a transla-
tion (ancient rulers liked to advertise their feats in a number of languages).

Suppose that as a result of such efforts it was possible to identify 4 vowels and
13 consonants. What is the remaining number of possibilities ? Clearly, it is
3! - 6! = 4320. This number of possibilities can be systematically checked out
using electronic computers.

Similar difficulties are encountered by cryptographers (experts in deciphering
codes).

Dancing in a Circle

Seven girls dance in a circle. In how many different ways can they form a circle?

If the girls were standing still, the answer would be 7! = 5040, the number
of permutations of 7 objects. But the girls are moving and so what counts is
their mutual positions and not their positions relative to the surrounding
objects. This means that we must identify permutations which differ from one
another by a rotation. Since each permutation gives rise to 6 new ones by
rotation, it follows that the number 5040 must be divided by 7. This gives
5040/7 = 720 different permutations of 7 girls dancing in a circle.

More generally, if # objects are arranged in a circle and we agree to identify
arrangements which differ by a rotation, then we obtain (z — 1)! different
arrangements.

Now let us compute the number of different necklaces which can be made out
of 7 different beads. By analogy with the problem just solved, we might think
that the number of different necklaces is 720. However, a necklace can not only
be rotated but also turned over (Fig. 7). Hence the answer to our problem is

720/2 = 360.
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Permutations with Repetitions

So far we have considered permutations of distinct objects. If some of the
permuted objects are of the same type, then the number of permutations
decreases since some of the permutations coincide.

To illustrate this situation consider the word “mart.” This word gives rise
to 24 different permutations:

mart ramt mtra rtma
matr mtar ratm rtam
mrat rmat rmta mrta
tram tmar amtr artm
tarm atrm atmr tamr
amrt armt tram tmra

Now consider the word “mama.” To obtain the permutations of this word we
could change “r” to “m” and “t” to *‘a’ in the 24 permutations of the word
“mart.” But then some of the latter permutations would coincide. Specifically,
the permutations “mart,” “‘ramt,” “mtra,” “rtma” would all reduce to the
word “mama.” Similarly,the permutations in the second row would all reduce to
the word ““maam,” and so on. We see that the 24 permutations can be divided
into groups of four such that changing “r”’ to *m” and *“t” to “a”

¥y 4% LR B 11

to ““a’’ reduces all
permutations in the same group to the same permutation. In the table above,
the groups in question coincide with the rows. Hence the number of different
permutations of the word *““mama” is equal to 24/4 = 6. The 6 different
permutations of “mama’ are

marmna, maam, mimaa, amarn, aamin, amima.
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The general problem can be formulated as follows:

There are k different types of objects. What is the number of n-permutations of n,
elements of the first type, n, elements of the second type,..., n;, elements of the kth type ?

Each permutation consists of # = n; + n, + - + n;, elements. If all of
these elements were different, then we would have n! permutations. Since some
elements are of the same type, there are actually fewer than n! permutations,
To obtain the number of different permutations consider the permutation

aa - abb b -xx - ox, (4)

e e e et
m Ty ()

where the elements of the first kind come first, the elements of the second kind
come next,..., the elements of the Ath kind come last. The elements of the first
kind can be permuted in 7,! ways. Since these elements are of the same type,
this has no effect on the permutation in (4). Similarly, the permutation in (4)
is not affected by the n,! permutations of the elements of the second type,..., the
n,! permutations of the elements of the kth type. (For example, permuting the
first two or the last two letters in *‘mmaa’ has no effect on the arrangement of all
the four letters.)

The permutations of the blocks of objects of the same type are independent
of one another. Therefore (by the rule of product), the elements of the permuta-
tion in (4) can be interchanged in »,! n,! +-- ;! ways without affecting it. The
same is true of any other permutation of our n objects. Hence the z! permutations
can be arranged in groups of n,! n,! --- ! equal permutations. But then the
number of different permutations with repetitions of n = n; + n, + - + ny
objects is

n!

Pn, ,nypooeymp)) = ——-—,
(2 7y 5000, 1) 1! nl oo my!

()

Using Formula (5) we can readily answer the following question: What s the
number of permutations of the letters in the word “Mississippr?” Since “‘m”’
66y 66 7

appears once, ‘1"’ appears four times, appears four times, “p” appears
twice, and there are 11 letters in all, we have, by Formula (5),

TR
8

11!
t-41-20-1!

P(4,4,2,1) = 5 — 34,650.

Anagrams

Until the 17th century there were no scientific journals. Scholars learned of the
work of their colleagues from books or from private communications. This



Anagrams 25

caused great difficulties when it came to publication of new results. Years
might pass before a book was printed. On the other hand, if one relied on a
private communication, then there was the danger of the recipient claiming the
result as his own. If this happened it was not easy to prove that such was indeed
the case. Then there was the possibility that the recipient of the letter found
nothing new in it; that he had thought about the problem, solved it, and was
about to write his colleague a similar letter.

All this gave rise to many priority arguments. Even at the end of the
17th century there were still protracted priority arguments involving Newton
and Leibniz (as to which of the two was the first to discover the differential and
integral calculus), Newton and Hooke (as to which of the two was the first to
formulate the law of universal gravitation), and so on.

Archimedes once found it necessary to resort to a ruse to settle a priority
argument. When he wrote about his results to some scholars in Alexandria
and the latter claimed his results as their own, Archimedes sent them an
additional letter containing truly remarkable formulas for areas and volumes of
certain figures. The scholars again said that they had known these formulas long
ago and that Archimedes was not telling them anything new. But then it turned
out that Archimedes trapped them; the remarkable formulas were false!

To safeguard their claims to priority and to prevent premature disclosure of
their results, scholars frequently put the essence of a discovery in a brief phrase,
rearranged the letters in the phrase and sent the rearranged phrase, an anagram,
to their colleagues. When the full result appeared in print it included the key
to the anagram. Anagrams were also used in political arguments. For example,
when the French king Henry III was murdered, the name of the murderer,
Brother Jacques Clément, appeared in the form of the anagram: C’est ’enfer qui
m’a créé (I am a creature of hell). The king’s opponents would not be outdone
and made the name Henri de Valois into the anagram Vilain Herodés (Herod-
like villainy). When Christian Huygens (1629-1695) discovered the ring of
Saturn, he made up the anagram

aaaaaaa, ccccc, d, eeeee, g, h, mim, I,

mm, nnnnnnnnn, 0000, pp, ¢, rr, s, ttttt, uuuuu.

An appropriate rearrangement of these letters yields the sentence
“Annulo cingitur tenui, plano, nusquam cohaerente, ad eclipticam inclinato.”
(Surrounded by a thin ring, flat, suspended nowhere, inclined to the ecliptic.)
Anagrams were not always an effective means of guarding secrets. When
Huygens discovered the first satellite of Saturn ('T'itan) and found that it rotated
about that planet in 15 days, he put the discovery in the form of an anagram and
sent 1t to his colleagues. One of them, Wallis, a master cryptographer, deciphered
the anagram, made it into a new anagram and sent it to Huygens. After the
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scholars exchanged solutions of the anagrams, it looked as if Wallis made the
discovery before Huygens. Later Wallis admitted the joke; he had made it to
show that anagrams were of little use in protecting secrets. Huygens was not
amused.

We compute the number of permutations required to guarantee the solution
of the first anagram of Huygens. The anagram consists of 7 a’s, 5 ¢’s, 1 d,
5€s,1g,1h,7i's,301's,2m’,9n’s,40%,2p’s,1q,27’,1s,5t’s,and 5u’s;
a total of 61 letters. In view of Formula (5), the number of permutations is

61!
7050105101171 312191 4121 1121 11 5! 51

This huge number is approximately equal to 108,

The job of going through these permutations is so big that an electronic
computer which does a million operations in a second could not cope with it in
all the time of the existence of the solar system.

In a sense, a human being could solve this problem more easily than a machine.
After all, a human being would consider only those permutations which contain
meaningful words, would take into consideration laws of morphology, and so on,
and this would greatly reduce the number of required trials. Most importantly,
he has a rough idea of the questions considered by his correspondent. With
all that, the job is cumbersome, to put it mildly.

Combinations

In some arrangements the order of the elements is immaterial. For example,
if out of 20 semifinalists in a chess tournament three players enter the finals,
then what counts is being one of the three finalists. Frequently, the winner turns
out to be a player who did not rank highest in the semifinals. Similarly, if 17 teams
participate in a soccer tournament and 13 reach the finals, then there is little
comfort in ranking 14th rather than 17th.

The term combination applies to arrangements in which the order of the
elements is immaterial. We speak of k-combinations of n elements and regard two
such combinations as different only if they differ in composition. The number
of k-combinations of  elements is denoted by the symbol C¥ .

There is a simple relation between the number C¥ of k-combinations and the
number A¥ of k-samples. In fact, permuting the elements of each k-combination,
we obtain k! distinct k-samples. This means that

RLCE= A%
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Hence

Ak n!
A m—R A (6)

Ct =

permutations of just derived coincides with the formula for the numberfo
The formula % elements of one type and » — % elements of another type:

n!

P(k,n—k)——*m.

In other words,

CE = P(k,n — k). (7)

Equation (7) can be deduced directly without involving the formula for the

number of samples. T'o this end we order the n objects out of which we are to
make up the various k-combinations and assign to each combination a code
consisting of # ones and zeros. In making up the code for a particular combination,
we write a 1 if a certain element enters the combination and a 0 if it does not
enter the combination.
(For example, the 5-combination {a, ¢, {, h, i} of the 10 letters a, b, ¢, d, ¢, f,
g, h, i, j is coded as 1010010110, and the code 0111001001 stands for the
5-combination {b, c, d, g, j}.) It is clear that every k-combination determines
an arrangement of & ones and n — k& zeros, and every arrangement of % ones and
n — k zeros determines a k-combination. Also, different arrangements of ones
and zeros determine different combinations. This means that the number of
k-combinations of z elements coincides with the number of permutations of %
elements of one type (ones) and n — k elements of another type (zeros).

By means of Formula (6) we can easily solve the problems discussed in the
beginning of this section. The number of different outcomes of the semifinals in
the chess tournament is

20!

37T 1140.

cs, =

The number of “sad’’ outcomes of the football tournament is

17!

4 —

The following is another problem involving combinations:

In how many ways can 8 rooks be set out on a chessboard? In distinction to the
rook problem considered on p. 20, we no longer impose the condition that no

rook can attack another. It follows that all we need do 1s count the number of
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ways in which it is possible to choose 8 of the 64 squares on a chessboard. The
number in question is

64!

Con = 81 56!

= 4,328,284,968.

Similarly, the number of ways in which 1t is possible to set out %k rooks on a
“chessboard” with m rows and n columns is

(mn)!
kl (mn — k)|~

I
Cmn =

If we replaced the % identical rooks with & different pieces, then the position
of each piece would matter. In that case, instead of counting combinations, we
would be counting samples, and the required answer would be

r _ (mm)!
Amn = (mn — k)|
The Genoa Lottery

At one time there flourished the so-called Genoa lottery. In some places the
Genoa lottery has survived to this day. The essentials of the Genoa lottery
were as follows: Participants bought tickets on which there appeared numbers
from 1 to 90. One could also buy tickets with two, three, four, or five numbers.
On a designated day, five tokens were selected in a chance drawing from a bag
of tokens bearing numbers from 1 to 90. The winners were owners of tickets
bearing exclusively numbers appearing on the selected tokens. (The popular
game of lotto is a variant of the Genoa lottery.) For example, a ticket with the
numbers 8, 21, 49 was a winning ticket if the selected tokens were numbered
3, 8, 21, 37, 49, and a losing ticket if the selected tokens were numbered, say,
3, 7, 21, 49, 63 (the number 8 appeared on the ticket but not on the selected
tokens).
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A winning ticket could have on it one, two, three, four, or five numbers, and
its owner received, accordingly, 15, 270, 5500, 75,000, 100,000 times the price
of the ticket. Many tried to get rich quickly by buying tickets with two or three
numbers, but there were practically no winners. The real winners were the
owners of the lottery.

To see what was involved we shall try to compute the ratio of “lucky”
outcomes to all outcomes for different types of tickets. The total number of
outcomes can be found by means of Formula (6). Indeed, a drawing was a
selection of 5 out of 90 tokens in the bag without regard to order, and, so,
a combination of 90 things taken 5 at a time. The total of such combinations is

s — 90! 90 -89 -88-87-86

% 518501 1:2-3-4-5 °

Now suppose a player bought a lottery ticket with | number on it. In how
many cases did he win ? If he is to win, then the number on his ticket must
coincide with | of the 5 numbers on the 5 tokens taken from the bag. The
numbers on the remaining 4 tokens can be arbitrary. These 4 numbers are
chosen from among 89 numbers. It follows that the number of lucky combinations
is

89 - 88 - 87 - 86

4
“w="T17233

But then the ratio of lucky combinations to all combinations is

Csy 5 1

cs, ~ 90 18

This means that the player’s chances of winning are | in 18. Put differently, he
pays for 18 tickets and wins 15 times the price of a ticket; the cost of 3 tickets is
pocketed by the owners of the lottery.

Clearly, this does not mean that a player wins precisely once in 18 drawings. Sometimes
he may lose 20 or 30 times in a row and sometimes he may win twice in a row, What
counts is the average number of wins computed over a long period of time for a large
number of players. Failure to understand this point may result in a faux pas of the kind
attributed to a doctor who said to his patient: “Your illness is fatal in 9 out of 10 cases.
The last 9 of my patients who suffered from vour illness died. This means that you are
bound to get welll”

Now let us compute the chances of winning when the ticket has 2 numbers.
In this case 3 of the 5 numbers on the tokens selected from the bag are arbitrary.
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Since these 3 numbers are chosen from among 88, the total of lucky outcomes is
in this case equal to

88 - 87 - 86

3 __
Cos = 1-2-3°

and the ratio of lucky outcomes to all outcomes is

s 4.5 2

Cs, 9089 801

Since the winner receives 270 times the price of the ticket, it follows that, for
every 801 two-number tickets sold, the lottery owners pocket the cost of
261 tickets. Clearly, a 2-number ticket is even less of a bargain for the player
than a 1-number ticket.

In the case of 3-, 4-, and 5-number tickets, the winning chances of the players
are even smaller. In the case of 3-number tickets, the ratio of lucky outcomes to
all outcomes is

Ch  3-4-5 1
Cs, ~ 90-89-88 11,748’

in the case of 4-number tickets it is

ck, 2-3-4-5 1

Cs, 90898887 511,038°

and in the case of 5-number tickets it is

I 1-2-3-4-5 |
C3, ~ 90 -89 - 88 - 8786 43,949,268 °
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The winner receives, respectively, 5500, 7500, and 1,000,000 times the price of
a ticket. The reader can readily compute the losses of the players in all of these

rasces.

Buying Pastry

A pastry shop sells 4 kinds of pastries: napoleons, éclairs, shortcakes, and
cream puffs. How many different sets of 7 pastries can one buy?

This problem is different from the problems we have solved so far. Since the
order in which the pastries are placed in a box is immaterial, the problem we are
dealing with is closer to combinations than to permutations. On the other hand,
the problem differs from problems involving combinations by the fact that
repetitions are allowed (for example, one may buy 7 éclairs). In such cases it is
natural to speak of combinations with repetitions.

T'o solve this problem we code each purchase using zeros and ones. Specifically,
we write as many ones as there are napoleons in the purchase. Then we write a
zero to separate napoleons from éclairs and follow it with as many ones as there
are éclairs. Then we write another zero (this means that if no éclairs were
purchased, then the code contains two successive zeros). After that we write as
many ones as there are shortcakes, a zero, and finally, as many ones as there are
cream puffs. If, for example, the purchase consisted of 3 napoleons, | éclair,
2 shortcakes, and 1 cream puff, then the corresponding code is 1110101101.
The code for 2 napoleons and 5 shortcakes is 1100111110. Clearly, different
purchases determine different arrangements of 7 ones and 3 zeros. Conversely,
every arrangement of 7 ones and 3 zeros describes a purchase. For example,
the arrangement 0111011110 describes the purchase of 3 éclairs and 4 shortcakes.

We see that the number of different purchases is equal to the number of
permutations with repetitions of 7 ones and 3 zeros. In view of Formula (5) on
p. 24, this number is

10! 10

9
P13 =331 =17

-8
3 = 120.

There is another way of obtaining the same result. We arrange the pastries in
each purchase in the following order: napoleons, éclairs, shortcakes, and cream
puffs. Then we assign to each éclair its “position number” increased by 1, to
each shortcake its position number increased by 2, and to each cream puff its
position number increased by 3 (the position numbers of the napoleons are
unchanged). For example, suppose a purchase consisted of 2 napoleons, 3 éclairs,
| shortcake, and 1 cream puff. Then the pastries are numbered 1, 2, 4, 5, 6, 8, 10.
It 1s clear that the largest number in any sequence is 10 (the last puff is numbered
7 4 3 = 10) and the smallest number is 1 (this is the number assigned to the
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first napoleon). Also, the numbers in a sequence are distinct. Conversely, every
increasing sequence of 7 of the 10 numbers from 1 to 10 describes a purchase.
For example, the sequence 2, 3, 4, 5, 7, 8, 9 describes the purchase of 4 éclairs
and 3 shortcakes. To see that this is the case, we subtract from the given numbers
the numbers 1,2, 3,4,5,6,7. Theresultis 1, 1, 1, 1, 2, 2, 2, that is, 4 ones and
3 twos. Now, | was added to the position numbers of the éclairs, and 2 was
added to the position numbers of the shortcakes. But then, as asserted, the given
sequence describes the purchase consisting of 4 éclairs and 3 shortcakes.

Note that all of our sequences are increasing. This means that each sequence is
uniquely determined by its elements. It follows that the number of our
7-sequences is equal to the number of 7-combinations of 10 numbers (from 1 to
10). The number of such combinations is

10!
CIO == —W == 120,

in agreement with our earlier result.

Combinations with Repetitions

As mentioned earlier, the preceding problem belongs to the class of problems
involving combinations with repetitions. These problems can be formulated as
follows: There are n different types of objects. We are required to compute the
number of k-arrangements of these objects without regard to order (in other
words, two arrangements are different only if they differ in the number of
elements of at least one type).

The general problem is solved very much like the problem about pastries.
Namely, each arrangement is coded by means of one and zeros, with each type
represented by as many ones as there are elements of this type inthe arrangement
and with different types separated by zeros (if objects of certain types are absent
then we write two or more zeros in a row). It follows that the number of ones
in each code is equal to the number of objects in an arrangement, and the number
of zeros in each code is one less than the number of types of objects. Thus each
k-arrangement is represented by a permutation with repetitions of & ones and
n — | zeros. Also, different arrangements are represented by different permuta-
tions with repetitions, and each permutation with repetitions represents a
definite arrangement. This means that the number C* of k-combinations with
repetitions of elements of 7 types is equal to the number P(k, » — 1) of permuta-
tions with repetitions of # — 1 zeros and k ones. Since

Plhn — 1) = Gt
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we have

v (BR+n—1)
Cu = Rl (n — 1)}

__
- Cn+k—1 :

The same formula can be derived in a different way. We group the elements in
each combination by type. Then we number the elements in accordance with
their positions in the combination except that we increase these numbers by | for
elements of the second type, by 2 for elements of the third type, and so on. In
this way each of our combinations with repetitions determines a k-combination
without repetitions of the numbers 1, 2,..., # + &2 — 1. This again shows that

Cs = Chips = ey ®

There are problems involving combinations with repetitions where each
combination must include elements belonging to » fixed types, r < n. Such
problems can be easily reduced to problems already solved. To guarantee
inclusion of elements of the required r types, we fill the first » positions of each
k-combination with elements of the 7 types in question, and fill the remaining
k — 7 positions in any manner whatever with elements of 7z types. This means
that the number of required combinations is equal to the number of (¥ — 7)-
combinations with repetitions of elements of z types, that is,

k—r k—r1
Cn - Cn-l—k—'r—l .

In particular, if » < %k and each k-combination must contain at least one element
of each of the n types, then the number of combinations is C¥—7 ,

The Soccer Tournament Revisited

We studied problems involving samples, permutations, and combinations.
Frequently different types of arrangements occur in the same problem.

Consider, for example, a soccer tournament with 17 participating teams.
By the rules of the tournament the first 3 teams are awarded gold, silver, and
bronze medals and the last 4 teams drop to a lower league. We shall say of two
outcomes of the tournament that they are essentially the same if the teams which
recieve the gold, silver, and bronze medals, respectively, and the teams which
drop to a lower league are the same in both cases. We are to compute the number
of essentially different outcomes of the tournament.

We know that the medals can be awarded in 4,, = 17 - 16 - 15 ways (see
p. 18). When it comes to relegating the last 4 of the remaining 14 teams to a
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lower league, the order of the last 4 teams is irrelevant and so the number of
possibilities isCy, = 14!/(4! 10!). By the ruleof product,the number of essentially
different outcomes of the tournament is

4
arior — 410l

4% - Cly=17-16-15 = 4,084,080.

The same result can be obtained by means of a different argument. If we
rule out ties, then there are P;, = 17! outcomes of the tournament. Permutations
of the teams rated 4 through 13 and permutations of the teams rated 14 through
17 lead to essentially the same outcomes of the tournament. The number of such
permutations is 10! - 4!, It follows that the number of different outcomes of the
tournament is 17!/(10! 4!).

Suppose the outcome of the tournament is to be communicated by means of
a telegram consisting of 4 dots and dashes. What is the smallest value of k7 We
know that the number of arrangements of % dots and dashes is 2*. It follows that
the least value of £ must be large enough to satisfy the inequality

2k > 4,084,080.

This means that & 2> 22. In other words, we must use at least 22 symbols to
communicate the outcome of the tournament.

Clearly, in communicating the results of a competition one does not make use
of computations of this kind, Nevertheless, it is easy to think of situations (such
as sending photographs from a space ship) in which transmission of information
involves great technical difficulties and each symbol is “worth its weight in
gold.” Then one must consider the various possibilities and select the one that is
most economical. These problems are studied in a branch of mathematics
called ¢nformation theory.

Properties of Combinations*

The numbers C* have many remarkable properties. These properties can be
proved in many ways. In some cases it is easiest to make use of the relation

k !
O =W = HT ®)

In other cases we resort to a combinatorial argument. Specifically, we compute

* The rest of this chapter may be omitted in a first reading. In the sequel, we make
use of the relations C = C7~* and Ci = Ci~l + Ci_, proved here.
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the number of arrangements of a certain kind and break them up into disjoint
classes. Then we find the number of arrangements in each class. By adding the
number of arrangements in each class we obtain once more the number of all
arrangements., This leads to the required relation.

We begin with the very simple relation

Cr = C37% (10)

This relation follows directly from Formula (9). In fact, if in (9) we replace k&
with n — k, then n — k becomes n — (n — k) = k, and all that happens is that
the factors in the denominator are interchanged. It is also possible to give
an easy proof of (10) without making use of the expression for the number of
combinations. We pair off each k-combination of z different elements with the
(n — k)-combination of the # — & remaining elements. In this pairing, different
k-combinations determine different (z — k)-combinations, and conversely. It
follows that C* = C"—*,
It is not much more difficult to prove the relation

Cr=Cai+Cry. (11)

We break up the set of k2-combinations of n elements q,, a,,..., a,_,, a, into
two classes. The first class consists of all combinations which contain 4, and the
second class consists of all combinations which do not contain this element.
If we remove from an arbitrary combination in the first class the element a, ,
then we are left with a (¥ — 1)-combination of the elements a,, a,,..., a,_, .
Thenumber of such combinations is C¥77 , so that the number of combinationsin
the first class is CX~} . The combinations in the second class are k-combinations
of the n — | elements a ,..., a,_, . The number of such combinationsis C}_; .
Since each of the CF k-combinations of the elements q, ,..., 4, belongs to exactly
one of these classes, we are led to the relation (11).

A similar argument yields the relation
Cy+ Cr+ Ci+ -+ 4 Cp = 2" (12)

We recall that 2” is the number of #-samples with repetitions of elements of
2 types. We separate these samples into classes with the samples in the kth class
consisting of k elements of the first type and » — k elements of the second type.
The samples in the kth class are precisely the permutations of % elements of the
first type and n — % elements of the second type. We know that the number of
such permutations is P(k, n — k), and P(k,n — k) = C¥ (see pp. 24 and 27).
This means that the number of samples in all the classes is C2 4 CL + -+ + C?,
On the other hand, this number is 2". This proves (12).
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In just this way it is possible to prove that

Y, Plm,m,m) = 3 (13)

nytngtng=n

where the sum is taken over all partitions of the number # into three ordered summands
(this means that if the sum includes P(m, , n,, ng), then it also includes P(n, , n3, n),
and so on). For proof we consider all n-samples of elements of 3 types and separate them
into classes of samples composed of the same elements (that is, each sample belonging
to the same class contains the same number of elements of the first, second, and third

type).

More generally we have the relation

Y Py, m) =k (14)

nytetng=n

where the sum is taken over all ordered partitions of the number » into 2 summands.

Next we consider m-combinations with repetitions made up of elements of
n + | types, say, n + | letters 4, b, ¢,..., x. The number of such combinations is

w1 = Cp'. . We separate these combinations into classes. A combination is
put into the kth class if and only if it contains exactly & copies of the letter a.
The remaining m — k places in the combination can be filled with letters taken
from among the 7 letters b, ¢,..., x. Thus the number of combinations in the
kth class is equal to the number of (m — k)-combinations with repetitions of
elements of 7 types, that is, C™ F It follows that the number of all the

nt+m—k-1 °
combinations 1s
ntm-1 + C?T—i-_r}z—z + -+ G+ G
On the other hand, we know that this number is C},,, . This proves that
Cg—1‘|’cvlz+cg+1+'"+ mim-1 = Crnim - (15)

If in Eq. (15) we change n ton + | and m to m — | and make use of Eq. (10),
then we obtain the relation

CG+Cunt+Cpt + = Cﬁﬂn (16)
For n = 1, 2, 3, relation (16) yields the relations
1
1+2_|_..._|_m:ﬁ(m_2+_)’ (17)
124234 4+mm+1)= m(m+13)(m—{—2)’ (18)

m(m + 1)(m + 2)(m + 3) '

1-2:342-3 -4+ fmm+ 1)m+2) = 7

(19)
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Using Formulas (17)-(19), we can easily find the sum of the squares and the
sum of the cubes of the natural numbers from 1 to m. Formula (18) can be
rewritten as follows:

124224 oo b2 1424 o b= m(m+l3)(m+2) _

By Formula (17), 1 + 2 + - + m = m(m + 1)/2. Therefore,
m(m + 1)(m 4 2) m(m 4 1)

2 2 e 2 __ .
12 + 22 4 + m 3 5
_ mm o DEm ) 0
6
Similar manipulation of Formula (19) yields the relation
2 2
P+ 28 4 o ot = (m4+ = 0

We leave it to the reader to obtain in this way formulas for sums of higher
powers of the natural numbers.

m-combinations with repetitions of elements of # types can be separated into
classes according to the number of types of elements in a given combination.
In other words, the first class will contain combinations of elements of exactly
1 type, the second class will contain combinations of elements of exactly
2 types,..., the nth class will contain combinations of elements of exactly 7 types
(clearly, if m < n, then there are only m classes).

Let us calculate the number of combinations in each class. Consider a
particular selection of k& types. The number of m-combinations with repetitions
of elements actually representing each of the selected & types is C7—f — C¥*-1
(see p. 33). The number of ways of selecting k out of n types is C¥ . By the rule of
product the number of combinations in the kth class is C*C*~! | By adding the
number of combinations in each class, we obtain the number of m-combinations
with repetitions of elements of z types. This number is C,’ , , . It follows
that

C‘i’laC’Pn—l + szacrlnq + -+ CZC&:{ = C:nn+fa—1 . (22)

If m < n, then the last term in the sum in (22) will be C™*C™1 . It is convenient

to replace the C¥ in each summand in (22) with C?~*. This yields the relation
CrlCo +CiCry+ -+ GG = Gy (23)

In each of the summands in the left-hand side of (23), the sum of the upper
indices is # — | and the sum of the lower indices is # + m — 1. Also, the upper
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indices vary and the lower indices stay fixed. A somewhat different form of (23) is
GGy + CCI 5+ - + C3Chn = Cr- (23')*

We now deduce an analogous formula in which the upper as well as the lower
indices vary. To this end we consider all the m-combinations with repetitions of
p different vowels and n — p different consonants. We separate these com-
binations into classes and put into the kth class all combinations consisting of &
vowels and m — k& consonants. Now we compute the number of combinations
in the kth class. T'o do this we think of each combination in this class as composed
of a k-combination (with repetitions) of p vowels and an (m — k)-combination
(with repetions) of # — p consonants. It follows that the number of combinations
in the kth class is Cf_,_,CmoF_ ., . But then the number of all the combinations
under consideration is

Cg—1C$+n—p—1 + C,_},C,’,?;;_,,_z + -+ C$+p—1Cg—sa—1 .

On the other hand, these combinations are all the m-combinations with
repetitions of elements of »n types and the number of such combinations is

Chr.n_1 - By equating the two expressions, we obtain the relation

Czoa—1C:nn+n—p—1 + C,}C:,':;;_p_z + o C:nn+p—1cg—p—1 = C:'?nl+n—1 . (24)

If we apply the identity C? = C777 to all the terms in Eq. (24), then we obtain
the formula

P—1lm—p—1 P—1pm—p-1 -1 —-p-1 __ -1
CooiCninpa + € G o+ GGyt = Gl

m+n—p

in which only the lower indices in the sum on the left-hand side vary. If in this
formula we change p to p 4 1, n to n 4 2, and m to m — n, then we obtain the
formula

CECIE 4 CLAChs o 4 ChyCi2 = CIY. (24

We see that in the sum on the left-hand side of (24’) the upper indices are

* One way of going from (23) to (23") is to replace » — 1 by ¢, m — 1 by p and
n + m — 1 by 7 in (23). Then we get the relation

CIC, + CICPT) +  + C3CP_, = C1.

This relation reduces to (23") if we replace r by n and ¢ by m. (Translators)
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fixed, the lower indices vary, the sum of the upper indices is 7, and the sum of the
lower indices is m.

We note a special case of the relation (23). If in (23') we put n — p = m,
then we obtain the relation

cict + CiCL + -+ CRCr = CF (25)
For p = m, (25) reduces to
(Co)* + (C3) + = +(C3) = 3, (26)

It is possible to generalize the relations just obtained. To this end we consider a set of
elements of g types, There are n, elements of the first type, n, elements of the second
type ,..., n; elements of the gth type. We assume that the elements of any particular
type are all different (for example, the type of an element is determined by its color and
all the elements which have the same color differ in shape).

We consider all m-combinations of elements of our set and separate them into classes
by composition, that is, by the number of elements of the first type, of the second type,...,
of the gth type in the combination. Hence each class is characterized by ¢ nonnegative
numbers (m, , m, ,..., m;) satisfying the inequalities 0 < m; < #; and the equality
my + mg + o+ my = m.

By the rule of product, the number of combinations in the class characterized by

(my , My yuesy, M) 1S C,,’Z’llC,’{’zz -+« Cra . Summing over all classes, we obtain the relation
q
Y cmere ... ¢l = 7, (27)
ﬂl L] ﬂq n

wheren = n; 4+ 1y, + - 4+ 74, and the summation extends over all ordered arrangements
(my, m,,..., m,;) of the nonnegative numbers m,, m,,..., mgsuch thatm, + m, 4+ m, = m.
If we consider combinations with repetitions, then we get the analogous relation

m m m, m
1 2 v ¢ =
Z Cn1+m1—1cn2+mz—1 qu-rma—l Cn+m—1 ’ (28)
where, as before, n = n; + n, + *** 4+ n, and the summation extends over the ordered
arrangements (m, , 7, ,..., M,).

One more property of combinations is based on the relation
crert=cren. (29)

We give a combinatorial proof of (29). To this end we take n different objects,
select & of the n# objects, and then select m — k of the remaining n — % objects.
This yields an m-combination of n# elements. For a fixed k&, this process can be
carried out in CEC™F ways. It is easy to see that each of the C™ combinations is
obtained in C¥ ways. This proves (29).



40 II. Samples, Permutations, and Combinations

We write down (29) for £ = 0,..., m and add the results. Since, by Formula
(12),

Co.+ Cp+ -+ + Cp =27,
we conclude that
CaCrt + CLCit 4 - + CrCo_, = 2Cy,

or

COCH™ 4 CLCI 4 - 4 CCITR — 27CI. (30)

Special Case of the Inclusion and Exclusion Formula

Many properties of combinations can be deduced from the inclusion and
exclusion formula (see p. 14). Consider the special case when the number
N(ay ,..., o) of elements with properties o ,..., o, depends not on the properties
involved but on their number, that is, suppose that

N(al) == N(“n))
N(oap) = N(oyag) = -+ = N(oy,10),
N(ooeg) = N(oqopey) = = N(ap_son_0),

and so on. Let NV denote the common value of the numbers N(w,),..., N(a,).
Then N(x) + -+ + N(a,) = nNV = CIN®, Similarly, if we define N® =
N(oqap), then it follows that

N(oyap) + N(ogog) + - + N(otw o) = CgN(z)_
Quite generally, we obtain the relation
N(oaay == o) + = + Nlonosa = &) = CoN®, (31)

where the sum on the left-hand side extends over all combinations of # properties
taken % at a time.
It follows that in this case the inclusion and exclusion formula takes the form

N9 = N CN® 4+ CEN® — .. - (—1)"CFN ™, (32)
Alternating Sums of Combinations

Now we deduce further properties of combinations. The new relations are
similar to the relations deduced earlier except for the fact that in the new
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relations the summands enter with alternating signs (a plus sign is followed by a
minus sign which, in turn, is followed by a plus sign, and so on).
The simplest relation of this type is

CO— CL4 €2 — o 4 (—1)"CE = . (33)

This relatlon is a consequence of (11). For proof, note that C) = C? |, = 1.
This allows us to replace the first summand in (33) with C?_, . Now by (11) we
have

Cg—1 —Cp=— ;—1 ’ —“Cfrla—l + C?z = C'ﬁ_l ’

n

and so on. This makes it clear that the sum on the left-hand side of (33) actually
reduces to zero, as asserted.

It is possible to give a combinatorial proof of (33). We write down all k-combinations,
k = 1,..., n, of n letters a, ,..., a, and subject them to the following transformation: we
put the letter @, in those combinations which do not contain it and remove it from those
combinations which contain it. It is easy to see that in this way we again obtain all the
combinations of # letters and that each combination is obtained exactly once. Obviously,
our transformation changes a combination with an even number of elements into a com-
bination with an odd number of elements, and conversely. This means that there are as
many combinations with an even number of elements (including the empty combination
without any elements) as there are combinations with an odd number of elements. But
this is precisely the statement of (33).

Next we prove the more complex relation
CaCrt — CRC + C2CPf — -+ + (—1)"CrCy_,, = 0. (34)

For proof, we consider m-combinations of # elements q, ,..., a, . We use the
symbol (a,,..., a), | << k < =, to indicate that a combination contains the
elements a4, ,..., 4; . The number N® — N(a, ,..., a;) of such combinations is
C™F (in these combinations k places are taken by the elements a, ,..., @; , and
there are » — k candidates for the remaining m — k places). The number N of
m-combinations is C*. The number N® of combinations without any of the
properties (4,),..., (a,) i1s zero (every combination has some elements). Hence
N = Cr", N® = 0, N® — C™F Substituting these values in Formula (32)
we obtain the relation (34).

In much the same way we show that

CaClim — Gl s + CRCTn 5 — - + (—1)"CRCL T = 0,
for m > n,

CngT+m—1 - CiCqTIfi_z + (= l)anng—l =0,

for m < n.

(35)
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For proof we consider all m-combinations with repetitions of elements of
n types a,, ay ,..., 4, . We use the symbol (a;), | < & <, to indicate that a
combination contains elements of type a; (and perhaps other elements). Then
N(a, ,..., a;) stands for the number of combinations (with repetitions) containing
elements of types a, ,..., 4; . Such a combination can be thought of as a com-
bination with repetitions in which k places are taken up by elements representing
each of the k types a, ,..., a;,, and the remaining m — k places are taken up by
elements of z types. This means that the number N(a, ,..., @;) coincides with the
number of (m — k)-combinations with repetitions of elements of = types, that is,
N(ay ..., a) = CF | . The number of m-combinations with repetitions of #
types is C",_; . There are no combinations with none of the properties (a;),
1 <k<n In other words, N9 =0, N=C . ,, N® = C;";,;”_k_l .
Substitution of these values in (32) yields (35).

Finally we show that form <=

A" — Cin — )™ + C¥n — 2)™ — - + (=)7L 1™ =0, (36)

For proof we consider all m-samples with repetitions of elements of # types and
use the symbol (a;), 1 << k < n, to indicate that a sample does not contain
elements of type a; . Then N(a, ,..., a;) denotes the number of m-samples with
repetitions which do not contain elements of types 4, ,..., 4;,, that is, are made
up of elements of # — k types a4 »-.., @, - Since the number of such samples is
(n — B)™, it follows that N*® = N(a,,..., @) = (n — k)™. The number of all
m-samples with repetitions of elements of # types is #™. Finally, observe that an
m-sample without any of the properties (a,),..., (a,) would contain elements of
all # types. In view of the assumption that m <, this is impossible. Hence
N©® = (. Substitution of these values for N@ N, and N® in (32) yields (36).

We have established many properties of the numbers C*. These properties
can be obtained in other ways. In Chap. V we will present geometric ways of
proving these results and in Chap. VII we will present the most powerful
method of proof, known as the method of generating functions. Using the
method of generating functions it is possible to prove not only the results of
this chapter but also many other interesting results.
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Combinatorial Problems with Restrictions

So far we have considered problems in which no restrictions were imposed on
the order of the elements in an arrangement. In the case of samples and permuta-
tions, all ways of ordering the elements were permitted. In the case of combina-
tions, order was irrelevant. Now we propose to discuss problems in which the
order of the elements is subject to restrictions.

Lions and Tigers

An animal tamer marches 5 lions and 4 tigers into the arena. In how many ways
can he line up the animals if a tiger must not be followed by another tiger ?
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The 5 lions can be lined up in 5! = 120 ways. A tiger can be placed ahead of
the lions, between two lions (the lions are supposed to be reasonably far apart),
or behind the lions. This gives a total of 6 places for the 4 tigers. Since the order
of the tigers is relevant, the number of ways in which they can be placed is
equal to the number of samples of 6 things taken 4 at a time, that is, As = 360.
But this means that there are 120 - 360 = 43,200 ways of lining up the animals.

With = lions and % tigers, the problem would admit

nl (n 4+ 1)!
(n — k4 1)!

P‘nA::+1 =

solutions. Of course, we must have & <{ n + 1, or else there will inevitably be
two tigers in a row.

Construction of a Staircase

Powmts A and B are to be joined by a staircase (Fig. 8 ). The distance from A to C
s 4.5 meters. The distance from C to B is 1.5 meters. The height of each step is
30 centimeters. The width of each step is an integer multiple of 50 centimeters.
In how many ways can the staircase be constructed?

——

—

A C
Fic. 8

Clearly, the staircase is to have 5 steps. Since 4.5/0.5 = 9, there are 10 spots
where a step can be constructed. In other words, we must choose 5 out of 10 spots.
This can be done in

10!

5 —
Cio = Srsr — 252

ways,

In general, if there are k steps and if there are n 4 | spots where a step
can be constructed, then the staircase can be constructed in CF_; ways.

This problem is similar to the problem about the animals and the animal
tamer. The tamer must not place two tigers in a row, and the carpenter must not
double the height of a step. On the other hand, there is a basic difference between
the two problems: To the animal tamer it ¢s important in what order the animals
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appear (for example, it is one thing to put the tiger Shah ahead of the others and
another thing to put the tiger Akbar ahead of the others), whereas to the carpenter
it makes no difference at which of the admissible spots a step is constructed.
That is why the carpenter has fewer choices than the animal tamer. In fact, if the
staircase were 1.2 meters high and 2.5 meters long, there would be 4 steps and
6 spots where the steps could be constructed. Then the carpenter would have
C% — 15 choices. In a corresponding situation the animal tamer has 43,200
choices. This, of course, is due to the fact that the tamer can permute the 5 lions
in 5! = 120 ways and the 4 tigers in 4! = 24 ways which means that he can
arrange his animals in 15 - 120 - 24 = 43,200 ways.

In its general form the staircase problem is equivalent to the following
problem:

In how many ways is it possible to arrange n zeros and k ones so that no 2 ones
occur together ?

To see this we first take another look at Fig. 8. The broken line in Fig. 8 can
be thought of as a representation of the 5-step staircase of “horizontal length”
9 discussed in the problem. It consists of 5 vertical segments any two of which are
separated by one or more of 9 horizontal segments. If we label each vertical
segment by a one and each horizontal segment by a zero, then we obtain a
sequence (10010100010010) of 5 ones any two of which are separated by one or
more of 9 zeros. In the more general case of a k-step staircase of “horizontal
length” =z, the corresponding broken line consists of & vertical segments any
two of which are separated by one or more of # horizontal segments, and the
corresponding sequence consists of k£ ones any two of which are separated by one
or more of n zeros.

In view of the equivalence of our two problems, it follows that the number of

sequences of k ones and # zeros with no two consecutives ones is C¥_, .

A Bookshelf

There are 12 books on a bookshelf. In how many ways can 5 of these books be
selected if a selection must not include two neighboring books?

This problem reduces to the problem just solved. We can describe a selection
by assigning ones to the selected books and zeros to the remaining books. This
means that a selection is described by a sequence of 5 ones and 7 zeros. Since we
must not select two neighboring books, our sequences do not include two
consecutive ones. But the number of sequences of 5 ones and 7 zeros which do
not contain two consecutive ones is C; = 56.

In general, suppose that there are n books on a shelf and that we are to choose
k of them without choosing neighboring books. Then this can be done in
C¥ .., ways. It follows that the problem is solvable only if n — &k 4 1 > &,

n

that is, only if > 2k — 1.
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Knights of the Round Table

Twelve knights are seated at King Arthur’s Round Table. Each of the 12 knights
regards his immediate neighbors as foes. Five knights must be chosen to free an
enchanted princess, In how many ways can one select a compatible group of knights ?

This problem is similar to the bookshelf problem except that the knights are
seated in a circle and not in a row. However, it is not difficult to reduce the
problem to one in which the knights are seated in a row. We choose one knight,
say, Sir Lancelot. Then we put all admissible selections of 5 knights which
include Sir Lancelot in one class and the remaining selections in another and
compute the number of selections in each of these two classes.

If Sir Lancelot is to set out to free the enchanted princess, then he must not be
accompanied by his immediate neighbors at the table. This means that his
4 companions must be selected from among the remaining 9 knights. Since
Lancelot’s immediate neighbors are not among the 9 knights, any selection of
4 of the 9 knights will do provided that it does not include foes, that is, immediate
neighbors. Observe that if we disregard Sir Lancelot and his two immediate
neighbors, then we may think of the remaining 9 knights as being seated in a row.
But then 4 of these 9 knights can be selected in Cj = 15 ways.

To compute the number of selections in the second class, we observe that
this time Sir Lancelot does not take part in the expedition, so that we can ignore
his presence at the Round Table. But then we are dealing with 11 knights who,
for all intents and purposes, are seated in a row. From these 11 knights we must
select 5 members of the expedition subject to the restriction that the selection
must not include immediate neighbors. This can be done in C} = 21 ways. It
follows that the required number of selections is 15 + 21 = 36.

In general, if n knights are seated at a round table and we are to select k of them
without including immediate neighbors, then this can be done in C*¥7X  + CE_,
ways.

The proof of this assertion is essentially a repetition of the earlier argument.
Sir Lancelot is included in C¥~3_, selections and is not included in C¥_, selections.
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It is easy to show that

n

C’a::}cq + C:zc—lc = n_=Fk C':Izc—k .
For example, if n = 12, X = 5, then
12 ., 12 5
7 Cy = 7 21 = 36

A Girl Has a Date

A film comedy with this title dealt with the misadventures of two vacationers
who forgot their passparts at home. It was decided to send them the passports
by mail. The girl at the post office had a date and was in such a rush that she
managed to put each of the two passports in the wrong envelope. Of course,
it could have been worse. If the girl had handled five passports instead of two,
then five rather than two wretches would have had to spend the night on the
hard benches of a park in the spa.

0

g

,
5 @@;

Come to think of it, this is not necessarily so. After all, the girl could have, by
chance, put some of the passports in the right envelopes. It is of interest to
see in how many ways she could commit the perfect blunder, that is, send each
passport to the wrong address.

This problem can be formulated as follows: How many permutations of the
5 numbers, 1, 2, 3, 4, 5, leave none of the numbers fixed ? To solve this problem
we make use of the principle of inclusion and exclusion (p. 14). We write («) to
indicate that a permutation leaves the number « fixed and denote by N, the
number of permutations with this property. Similarly, we denote by N,; the
number of permutations with properties («) and (f), that is, the number of
permutations which leave « and B fixed. The sense of N,z , and so on, is clear.
Finally, we denote by N‘ the number of permutations with none of the
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properties (1), (2), (3), (4), (5), that is, the number of permutations which leave
none of the numbers 1, 2, 3, 4, 5 fixed. By the principle of inclusion and exclusion

NO =N—-N —N,— N, — N,— N,
+ Npg+ ="+ Ny — Nygg — - — Nyys
+N1234+ "+ Nogss — Nisggs » (1)

where N = P; is the number of permutations of 5 elements (see p. 14).

Our problem is simplified by the fact that the properties (1), (2), (3), (4),
and (5) are on a par, so that N, = N, = N; = N, = N;. Similarly, N, =
Ny = -+ = N, (it makes no difference whether the fixed numbers are 1 and
2 or 3 and 4), and so on.

The number of unordered pairs which can be selected from among the
numbers 1, 2, 3, 4, 5 is C; [we count unordered pairs because the property
(1, 2), say, is the same as the property (2, 1)]. Similarly, there are C§ unordered
triples, Cs unordered quadruples, and C? unordered quintuples. If we denote by
N® k= 1,2,3, 4,5, the number of permutations leaving & prescribed numbers
fixed, then Formula (1) takes the form

N _ N _ CslN(l) 4+ CS2N(2) . CgN(a) 4+ CgN(il) - C55N(5). (2)

To complete the solution of the problem, we must compute the values of
N® k =1,2, 3,4, 5. NU denotes the number of permutations which leave,
say, | fixed. If | stays fixed, then the remaining numbers can be permuted in
P, = 24 ways. Hence N'' = P, . Again, if, say, | and 2 remain fixed, then the
remaining numbers can be permuted in Py = 6 ways, Hence N® = P,
Similarly,

N® = P, = 2, N® = p =1, and N® =P, =1.
Substituting these values in (2), we find that
NO—p _ clp, + C?P, — C?P, + C*P, — CIP,
=120—5-244+10:-6—10-24+5-1—1-1=44,

This means that in 44 out of 120 cases none of the people will receive his passport.

In much the same way we can compute the number of cases in which just
1 person receives his passport. For every choice of a lucky person the remaining 4
unlucky ones can have their passports interchanged in

P, — CP, + C2P, — C3P, + CP, = 9

cases. Since each of the 5 people may be the lucky one, there are 5-9 = 45
cases in which just | person receives his passport.
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We leave it to the reader to verify that in 20 cases just 2 people receive their
passports, in 10 cases just 3, in Q cases just 4 (if 4 out of 5 people receive their
passports, then so does the fifth person), and in | case all 5 people receive their
passports,

Another way of summarizing our results is to say that of the 120 permutations
of 5 elements, 44 have no fixed elements, 45 have just | fixed element, 20 have
just 2 fixed elements, 10 have just 3 fixed elements, and 1 has 5 fixed elements.

A Telepathic Séance

Some people claim to be able to read minds at a distance. Such claims were
tested by picking so-called Zener figures (Fig. 9) in a definite order and asking
the telepathist to guess in what order the figures were picked.

F1c. 9

Suppose the 5 figures are selected without repetitions. Then the number of
permutations of these figures is 5! = 120. At a séance one of the permutations
of the figures is chosen and the telepathist is asked to name the figure appearing
in each position. The success of the telepathist is measured by the number of
correctly guessed figures. The calculations which we carried out on pp. 48-49
imply that the results of random guessing would be approximately as follows:
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no figure guessed correctly in 44 out of 120 cases, | figure guessed correctly in
45 cases, 2 figures guessed correctly in 20 cases, 3 figures guessed correctly in
10 cases, and all 5 figures guessed correctly in 1 case. It follows that in random
guessing the number of correctly identified figures is equal, on the average, to

45+20-2+10-3+5=

120 :

per permutation. Also, this result does not depend on the number of different
figures involved in a permutation. In other words, in the case of a permutation of
n distinct figures, the expected number of correctly identified figures is equal, on
the average, to | per permutation. If a person systematically manages to guess
correctly a larger number of figures, then this merits careful scrutiny in order to
determine whether one is faced with a hoax (a rather frequent occurrence)
or a special endowment.

We will now try to determine how the average number of correctly identified
figures changes if we allow repetitions. To allow repetitions is to go from
permutations to samples with repetitions. The number of samples of # elements
in which no element is in its “lawful” position is (n — 1)*. In fact, the first
position can be filled with any element other than the first, the second position
can be filled with any element other than the second, and so on. In other words,
each position can be filled with » — | candidates. By the rule of product we
conclude that the number of possible arrangements is indeed equal to (n — 1)

Next we compute in how many cases just 1 element is in its lawful position.
Let this be, say, the first element. Then for each of the remaining » — 1 positions
there are # — 1 candidates (all the elements other than the “lawful occupant”
of the particular position). But then the number of samples in which just the
first element is in lawful position is (z — 1)*~1. Since the same count applies to
each of the # positions, it follows that the number of samples with just 1 element
in lawful position is #(n — 1)*~1. A similar argument shows that the number of
samples with just & elements in lawful position is Ci(n — 1),

For example, if there are 5 distinct elements, then we obtain the following
result: there are 4° = 1024 samples with repetitions in which all the elements are
displaced, 5 - 4% = 1280 samples with just 1 element in lawful position,
10 - 43 = 640 samples with just 2 elements in lawful position, 10 - 42 = 160
samples with just 3 elements in lawful position, 5 - 4 = 20 samples with just
4 elements in lawful position, and | + 4° = | sample with all elements in lawful
position. All of these classes of samples add up to

1024 4 1280 + 640 4 160 + 20 + | = 3125
samples. On the other hand,
A2 = 5% = 3125.
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In random guessing the number of correctly identified figures is again equal, on
the average, to

1280 +640 -2 +160 -3 4+20-44+1-5
3125 = 1

per permutation. In other words, in random guessing one can expect to identify
correctly 1 out of 5 figures, and this outcome does not depend on whether or not
repetitions of figures are allowed. On the other hand, the following table shows
that the distribution of the number of correctly identified figures is different in the
two cases:

Number of
correctly Without With
identified figures repetitions repetitions
0 0.366 0.328
1 0.375 0.410
2 0.167 0.205
3 0.083 0.051
4 0,000 0.006
5 0.009 0.000
Derangements*

The techniques of the previous section enable us to solve the following
problem: Find the number D, of permutations of n elements in which no element stays
in its original position. The solution is given by the formula

Dn = Pn - C')]an—l + C’?LPTL—Z — 4 (_l)nc;':

=l = o - 2 3)

n!

A reader familiar with the theory of series will note that the expression in brackets is
a partial sum of the series for e~

It is convenient to extend Formula (3) to the case # = 0. The natural definition
is D, = 1.

The number D, , of permutations in which just 7 elements remain in their
original positions and the remaining n — 7 elements change their positions is
given by

D’FL,T = C:';Dn—'r . (4)

* This section can be omitted in a first reading of the book.
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Indeed, the 7 elements which stay in their original positions can be selected in
C?” ways. For every choice of the r fixed elements, the remaining n — 7 elements
may be permuted in all possible ways but must not end up in their original
positions. This can be done in D,_, ways. Thus, by the rule of product, the
number of required permutations is equal to C;D,,_,. .

We separate all permutations into classes of permutations with the same number of
fixed elements. Since there are in all n! permutations, we obtain the relation

nl = Z Dn,r = Z C;Dn-r . (5)

=0 =0

Another relation connecting the numbers n! and D, , is obtained by counting the
number of fixed elements in the n! permutations of # elements a ,..., @, . This count
can be effected in two ways. One way is to note that the element a, stays fixed in P,_, =
(n — 1)! permutations and the same is true for each of the remaining elements a, ,..., a, .
This means that the number of fixed elements is n(z — 1)! = n! Another way is to note
that the number of permutations in the rth class, that is, permutations with just » fixed
elements, is D,, . . But then the number of fixed elements in the rth class is#D,, , . Summing
over all the classes we obtain X,_, 7D, , fixed elements. This proves the relation

n n

nl = Z TDn_r = Z TC:‘IDﬂ—f . (5’)

r=0 r=0

The principle of inclusion and exclusion enables us to solve the following
problem: Find the number of permutations of n elements in which r prescribed
elements are displaced (and the remaining are either displaced or remain fixed).
The required number is given by the formula

nl— Cn— D+ C¥n — 2! — -+ (=1)"(m — 1)\, (6)

Subfactorials*

The numbers D, are sometimes referred to as subfactorials. These numbers
share many properties with ordinary factorials. For example, for ordinary
factorials we have the relation

n! = (n— Diz— D!+ (=—2)]. (7
(Proof: (n — )[(n — D! 4+ (» — 2)!]] = (» — 1)(n — 2)! n =nl.) We show that

for subfactorials we have the analogous relation
D, = (n — DDy + Dpsl- (8)

* This section may be omitted in a first reading of the text.
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To prove (8) we replace D, ; and D,_, with their expansions based on
Formula (3). Then it is easy to see that

(7 — D[Dpy + Dpp] = (n — Dl(n — DI + (n — 2)]]

1
T2

+ (1) Y(n — 1).

(—l)”‘z]

1
x [1 - TR T T =)

By Formula (7),
(n— Din— D! 4 (n — 2)!] = nl.

Also,

R e

Therefore,

1 1 l (=D
(n — DDy g + Dp ] = nl [1 Tt T T T =)

(-1, (i
T T | = ..

The following, purely combinatorial, proof of relation (8) is due to Euler. We consider
the permutations all of whose elements are displaced. In these permutations the first
position is filled by any element different from the first. Since the number of such elements
isn — 1, our D, permutations can be separated into n — 1 classes according to the elements
in the first position. Clearly, each of these classes contains the same number of permuta-
tions,

We compute the number of permutations in one of these classes, say, the class in which
the first position is filled by the second element. This class can be separated into a subclass
consisting of permutations in which the first element occupies the second position, and
a subclass consisting of the remaining permutations, A permutation in the first subclass is
characterized by the fact that its first two elements are interchanged and the remaining
n — 2 elements are displaced. This means that the first subclass consists of D,_, permuta-
tions.

Now we show that the second subclass consists of D,_, permutations. The second
subclass consists of all permutations in which the first element is not in the second
position and the remaining elements are displaced. If, for the moment, we regard the
second position as the “lawful’’ position of the first element, then it is clear that the first,
third, fourth,..., nth element are displaced. Since the number of these elements is # — 1,
it follows that the number of permutations in the second subclass is D,_; . But then our
class consists of D,_, + D,_; permutations. Multiplying this number by n—1 (the
number of classes into which we split our D, permutations) we obtain relation (8).

Formula (8) implies that

D,—nD, , = _[Dn—l - (n - l)Dn—2]‘
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Applying this relation an appropriate number of times, we obtain the relation
D, —nD,_ , = (—1)"?[Dy, — 2D,].
Since D, = | and D; = 0, this relation reduces to
D, =nDp_; + (=1 ©)

Formula (9) resembles the relation #n! = n(n — 1)! for factorials.
The following table gives the values of subfactorials for the first 12 natural
numbers:

n D, n D, n D, n D,

1 0 4 9 7 1854 10 1334961
2 1 5 44 8 14 833 11 14 684 570
3 6 265 9 133 496 12 176 214 841

Caravan in the Desert

A caravan of 9 camels travels across the desert. The journey lasts many days and
each of the travelers finds it boring to see the same camel in front of him. In how
many ways s it possible to permute the camels so that each camel is preceded by
a camel different from the previous one?

Such permutations exist. One way of realizing such a permutation is to reverse
the order of the camels so that the last camel comes first, and so on. (This scheme
is suggested by the Arab proverb: ““On the return journey the lame camel is the
leader.”)

To solve the problem, we consider the camels in their original order and then,
starting with the last camel, assign to them the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9.
Our problem now is to find the number of permutations of the numbers 1, 2, 3,
4, 5, 6, 7, 8, 9 which do not contain a single one of the pairs (1, 2), (2, 3), (3, 4),
4, 5), (5, 6), (6, 7), (7, 8), (8, 9). To solve this problem we again apply the
principle of inclusion and exclusion.
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First we compute the number of permutations containing the pair (1, 2). It is
convenient to think of this pair as a single new element. Then we are dealing with
8 rather than 9 elements, and the number of permutations containing (1, 2) is
Py . Clearly, the same count is valid for each of the 8 pairs.

Now we consider permutations containing 2 prescribed pairs. If the 2 pairs in
question share an element (for example, (1, 2) and (2, 3)), then we view the
3 distinct elements in the 2 pairs as a single new element. If the 2 pairs are
disjoint (for example, (1, 2) and (5, 6)), then we regard them as 2 new elements.
In either case we are dealing with 7 rather than 9 elements, and the 7 elements
can be permuted in P, ways. Also, 2 out of 8 pairs can be selected in C; ways.
More generally, there are P,_, permutations containing 2 prescribed pairs, and
k out of 8 pairs can be selected in C§ ways. By the rule of product, there are
CEP,_, permutations containing just & pairs. By the principle of inclusion and
exclusion, the number of permutations which do not contain any of the 8 pairs is

Ps_CgPs‘FCgP?_CgPe+CgPs_CgP4+CgP3_CgP2+CgP1

5 4 3 2

_ 3 [9__+__£ — %]=148,329.

20 3074 st el

An analogous argument shows that the number of permutations of the

n numbers 1, 2, 3,..., n which do not contain any of the n — 1 pairs (1, 2),
(2, 3),..., (m — 1, n) is given by the formula

E,=P,—Cs P, + cz-lPﬂ- —C P+ (=1)TCP,
. n—2 n— 3 (— 11
= (- [ =2 et o (10

Using factorials, we can give (10) a striking form. We write each term in the sum on
the right-hand side of (10) as a sum of two terms:

(=1 (m—k (=1 (1!

T TR o T
Then
_ —_1— 1 (_l)n—l (_1)11
E”'_"'[l 1'+ o Y e Sy ]
i e Vi
+ =1 [1——+F_ ey T (n—m]'

(The extra term in each of the two sums on the right-hand side is innocuous: after multi-
plication by #! and (n— 1)! these terms reduce to (—1)" and (—1)"*"1, respectively,
and (—1)" + (—1)*~* = 0.) But then

Eﬂ = Dn + Dn—l . (11)
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Thus the number of permutations of 1, 2, 3,..., # which do not contain any of the pairs
(1: 2): (2: 3):"': (n— 17 ﬂ) 18 Dn + Dn—l .

The same argument shows that the number of permutations of n elements
which do not contain 7 < n — | preassigned pairs is

P, — Cal'Pn—l + Caz'P —— (_I)TC:Pn—r . (12)

The answer is different if the number of disallowed pairs is greater thann — 1.
For example, suppose that, in addition to the pairs (1, 2), (2, 3),..., (n — 1, n),
we disallow the pair (n, 1). Reasoning as before, we find that the answer is given
by the formula

F,=pP, — CVILPn—l + C:Pn—z_ e (_l)kC::Pn—k + o+ (_l)n—lc;r:—lpl
(~1y

1 1
:”‘[1—T+‘zr—"‘+@“‘_—1)r

] = nD,_,. (13)
To see this, note that in this case there are n disallowed pairs and that no
permutation contains all the » pairs (if a permutation contains the pairs (1, 2),
(2, 3),..., (n — 1, n), say, then its first element is | and its last element is z, and
s0 it cannot contain the pair (n, 1)). But then the last term in (13) is (— 1)*-1C? 1P,
and not (—1)"C Py = (— 1)

It would be of interest to derive the answer F,, = nD,_, by purely combina-
torial means.

On the Merry-Go-Round

n children go on a merry-go-round. They decide to switch seats so that each child
has a new companion in front of him. In how many ways can this be done?

This problem is similar to the caravan problem solved earlier. However, now
there are » disallowed pairs ((1, 2), (2, 3),..., (# — 1, n), and (%, 1)) and some
permutations, for instance the original one, contain all of them. Also, in the
present case we do not distinguish between permutations which differ by a
rotation, so that now & elements yield only P;_; = (k — 1)! essentially different
permutations. Making these allowances and using the principle of inclusion and
exclusion, we see that the required number of permutations is

Qn =P, — CwILPn—z + quan-a — (_l)n—lcg—lpo + (_l)ncg : (14)
It is easy to see that this relation can be written as
On = Dyoy— Dyy + Dyy — =+ + (—1)*—D, . (15)
Indeed, since C¥ — Ci~! = C*_| | Formula (14) implies that for n > 1

.Qn + Qn—l =Ppy — Crl;_lpﬂ—z + C:_an—S -+ (_l)ﬂ_l b
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and this, in turn, is equal to D, _, (see p. 53). Thus, Q, + @,y = D,_; . By Formula (14),
Q, = 0. Adding the chain of equalities

Qn + Qﬂ—l = Dn-l ’
_‘Qn—l _‘Qn—z = —Dn—z y
Qﬂ—2 —l_ Qﬂ—3 = Dﬂ—3 3
(—D"2Qs = (—D"2D,,

we obtain relation (15).

Queue at the Box Office

m —+ k moviegovers line up for tickets at the box office. m of the people have dollar
bills and k have half-dollar coins. A ticket is 50 cents. To begin with there is no
money in the box office. This means that some queues are “bad’’ in the sense that at
some point the cashier is unable to make change and other queues are “good’ in the
sense that no such snag develops. We are to compute the number of good queues.

gox Office

S\O

If, for example, m = k = 2, then there are only 2 good queues: idhd and
hhdd (h denotes a half-dollar and d a dollar). The remaining 4 queues are bad:
in the queues ddhh, dhdh, and dhhd already the first moviegoer cannot get
change and in the queue kddh the third moviegoer cannot get change.

For small values of # and %, it is easy to sort out the good and bad queues, but
for large values of m and % this is not possible. After all, the number of permuta-
tions of m dollars and % half-dollars is

P(m, k) — i”-’ﬁﬁ—!”'—.
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If, say, m = k& = 20, then

40!

which is more than one hundred billion.

In mathematical terms, our problem is to find the number of permutations of
m d’s and k h’s such that for every r, 1 <{ 7 <{ m + %, the number of %’s in the
first 7 terms of the permutation is not less than the number of d’s (in other
words, if one is to avoid a snag, then the number of half-dollar coins must not
be smaller than the number of dollar bills).

It is clear for permutations of the required type to exist we must have m < k;
otherwise there will not be enough half-dollar coins to give to the people with
dollar bills. We, therefore, assume that 0 << m < k.

It is convenient to compute first the number of bad permutations (in our case,
permutations corresponding to queues in which the cashier is unable to make
change). Then, to get the solution of our problem, we need only subtract this
number from the number P(m, k) = C},, of all permutations of m d’s and & #’s.

We will prove that the number of bad permutations of m d’s and k A’s is
P(m — 1,k + 1) = CI'7}, the number of permutations of m — 1d’s and
k4 10ks.

For proof, consider a bad permutation of m d’s and k k’s. Suppose a snag
develops at a certain position. Then this position must be occupied by a d, and
the preceding positions must be occuped by equal numbers of d's and A’s;
in other words, the number of the “snag position” has the form 2s 4+ 1, and the
preceding positions are occupied by s d’s and s &’s.

Let us put an % in front of our permutation (protesters in the queue must be
told that this will help make change). The result is a permutation of m d’s and
k + | A’s which starts with an 4 and has the property that half of its first 2s 4 2
letters are d’s and half are #’s (there were s A’s and s 4 1 d’s and we added an A).

Our next move is bound to displease the owners of dollar bills and to please
the owners of half-dollar coins. We restrict ourselves to the first 2s + 2 positions,
give each owner of a half-dollar coin a dollar bill in exchange for his coin, and
each owner of a dollar bill a half-dollar coin in exchange for his dollar bill
(For example, in the line up

hhdhdhddhddhhdhhd

we hit a snag at the position marked by d. If we put an % in front of this lineup and
carry out our exchange procedure, we end up with the lineup

dddhdhdhhdhhhhdhhd.)

Since in the first 2s + 2 positions the number of dollar bills was equal to the
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number of half-dollar coins, our exchange procedure left the number of bills and
the number of coins unchanged. This means that we end up with a permutation
of md’s and k + | &’s starting with a 4. In other words, we have associated with
every bad sequence of m d’s and k& /’s a definite sequence of md’s and & 4 | A’s
starting with a d.

Now we show that in this way we obtain all sequences of md’s and k + | &'s
which start with a d. Consider a sequence of this type. Since m < k, some
segment of our sequence (beginning with the first position) must contain equal
numbers of d’s and #’s. If in this segment of the sequence we change d’s to A’s
and %’s to d’s and discard the initial 4, then we end up with a bad sequence of
bills and coins; in fact, the snag occurs at the point at which in the original
sequence the number of d’s and the number of #’s became equal for the first time.

We have shown that the number of bad sequences of dollar bills and half-
dollar coins is equal to the number of permutations of md’s and k& 4 1 A's
starting with an 4. If we reject the first letter in each sequence, then we obtain
all permutations of m — 1 d’s and 2 + 1 /’s. The number of such permutations
is

In other words, the number of bad permutations is C} . Since the number of
permutations of md’s and k k’s 1s C}7 , , it follows that the number of good
permutations 1s

Crfnnﬂc - m—:lt - %—_1 $+k- (16)

In particular, if # = m, that is, in case of queues in which there are as many
dollar bills as there are half-dollar coins, things will go smoothly in [1/(k + 1)]Cs;
cases, and snags will develop in [k/(k + 1)]C§, cases. This means that the larger
the value of & the smaller the percentage of good queues.

Having solved our problem, we consider a problem which is closely related to
it. Suppose the cashier thought ahead and when the sale of tickets started he had
on hand q half-dollar coins. Consider all possible queues of moviegoers, m of whom
have dollar bills and k of whom have half-dollar coins. In how many cases will the
cashier avoid snags over making change?

It is clear that if m <C ¢, then no snag can develop; the cashier has enough half-
dollar coins on hand to make change even if all the peoplein the queue present
dollar bills. It follows that we can restrict ourselves to the case when

g<<m<k-+gqg.

Furthermore, we can assume that the cashier acquired ¢ half-dollar coins
because someone put ¢ people with half-dollar coins at the head of the queue.
This allows us to formulate our problem as follows:
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A queue consists of k + ¢ people with half-dollar coins and m people with dollar
bills. The first q people have half-dollar cotns. In how many cases will no one have
to wait for change?

The solution of this problem is very similar to the solution of the special case
g = 0 discussed above. First we count the bad queues. In each bad queue a snag
occurs at a position occupied by a man with a dollar bill who is preceded by
2s people half of whom have dollar bills and half of whom have half-dollar
coins. We put in front of the queue a man with a half-dollar coin. We restrict our
attention to the first 2s 4 2 people in the queue and change their dollar bills to
half-dollar coins and conversely. The result is a permutation of m dollar bills
and £ 4+ ¢ + 1 half-dollar coins with the first ¢ + 1 positions occupied by dollar
bills. Each such permutation is derived from just one bad permutation of dollar
bills and half-dollar coins. It follows that there are as many bad permutations
as there are permutations of m dollar bills and £ + ¢ 4+ 1 half-dollar coins where
the first ¢ + 1 positions are taken by dollar bills. In counting permutations of the
latter type, we can set aside the first ¢ + 1 dollar bills. But then we get all
permutations of m — ¢ — 1 dollar bills and k2 4 ¢ + 1 half-dollar coins. The
number of such permutations is P(m — ¢ — 1, kR + ¢+ 1) = C»#1. This
means that there are C, 7! bad permutations. Since there are C, , permutations
all told, it follows that the number of good permutations is

ik — Crak - (17)

The following results are closely related to the results discussed above:

If m <k, then the number of permutations of md’s and k I's with more I's than
d’s in front of each letter (other than the first) is
k—m .
m+k—1 - (18)

If m = k, then the number of permutations of md’s and k h’s with move h's than
d's in front of each letter (other than the first ) is (1/R)C5.2, -

Suppose & > 1. The permutations in each of these two problems start with
two h’s. Setting the first of these /’s aside reduces the first of our problems to the
first problem in this section and the second of our problems to the special case
of the first problem in this section treated immediately after (16). This being

so, the answers to the present problems are obtained from the answers to the
earlier problems by replacing & by & — 1.

_1 .
C$+k—1 - C:nn+lc—1 -

Problem of Two Rows

It often happens in combinatorics that two apparently unrelated problems are
really two versions of the same problem. The following problem illustrates
such a situation.
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In how many ways is it possible to line up 2n people of different height in 2 rows
of n people each so that the people in each row are lined up according to height and
the person in the first row is invariably taller than his counterpart in the second row?

We show that this problem reduces to (a special case of) the problem of the
queue in front of the box office. After lining up the people in 2 rows in accordance
with the requirements, we give to each person in the first row a half-dollar coin
and to each person in the second row a dollar bill. Then we arrange the 2 rows
of people into | row by height. The result is a queue in which n people have
dollar bills and #z people have half-dollar coins. We claim that this queue is good
in the sense that it will file past the cashier without a snag. In fact, consider
a person who occupies the kth position in the second row. Then of the people
with dollar bills only # — 1 are taller than he, and of the people with half-dollar
coins at least k are taller than he (namely the first & people in what was originally
the first row). But this means that by the time he gets to the box office, the
cashier is bound to have at least one half-dollar coin and so will be able to make
change. Conversely, start with a good queue of n people with dollar bills and »
people with half-dollar coins of which we assume, without loss of generality,
that its members are arranged by height. The reader will verify that if the owners
of the half-dollar coins are lined up by height in one row and placed in the back
of the first row, then the resulting 2-row lineup conforms to the requirements of
our problem. This means that the number of arrangements conforming to the
requirements of our problem is equal to the number of good permutations of
nd’sand n /s, thatis, to [1/(n 4 1)]C3., .

Additional Properties of Combinations*

We are now in a position to deduce additional properties of the numbers C}
(see p. 34). To this end we separate the “bad” permutations of m d’s and k& A’s
into classes. We saw that the number of the first “snag position”’ is of the form
2s + 1, that this position is occupied by a letter 4, and that this d is preceded
by s d’s and s &’s which form a “good” permutation. We put in the sth class all
bad permutations in which the snag occurs at the position 2s 4 1. Clearly, s can
take on the values 0, 1, 2,..., m — 1.

We compute the number of permutations in the sth class. The first 2s
elements of a permutation in this class form a good permutation of s d’s and s /’s,
and the number of such permutations is [1/(s + 1)]C;, . Furthermore, there is
a letter 4 in the (2s + 1)th position followed by an arbitrary permutation of
m — s — 1 d’sand k — s k’s. The number of such permutations is P(m — s — 1,

* This section can be omitted in a first reading of the text.
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k—s) =Cr By the rule of product, the number of permutations in the

m+k—2s—1 *
sth class is
1

s+ 1

Since there are CJi. 1 bad permutations and m classes, we obtain, for m < &, the
relation

8 rvm—s—1
CzsCm+Ic—2s—1 .

CoCmri—1 + Cl k- + C Cmiis+ " +— C;na'n——12clcc.—m+1 =Cnx- (19)

This relation is a special case of the relation

m—1

Y [Cos — G 10 2 = O (20)

3=p
where p << m < p + k (we assign to C;? the value zero). The proof of (20) is
similar to the proof of (19) except that we are separating into classes bad
permutations of m d’s and k 4 p A’s which start with p d’s (see p. 60).

Next we consider relations obtained by separating good permutations into
classes. The number of good permutations of & d’s and & &’s is [1/(k + 1)]C¥, .
We know that after the 2k people in a good queue have all bought tickets, the
cashier is left without half-dollar coins. In the case of some good permutations,
it may happen that the cashier is left with no half-dollar coins before the end
of the queue, and what saves the day is that the next moviegoer had a half-dollar
coin. We break up the good permutations into classes and put into the sth class
all the permutations in which the cashier is first left without half-dollar coins
after serving the moviegoer occupying the 2sth position, s = 1, 2,..., k.

We compute the number of permutations in the sth class. Such a permutation
is made up of two parts. The first 2s letters form a permutation of s d’s and s /’s
with each letter preceded by more /’s than d’s (otherwise equality of d’s and &’s
would set in before position 2s). We saw that the number of such permutations
is (1/5)Cs.2; (see p. 60). After the sale of the first 2s tickets, the cashier is left
without half-dollar coins. It follows that in order for the rest of the queue to pass
without a snag, the remaining 2 — s d’s and & — s #’s must form a good permu-
tation. The number of such permutations is [1/(k — s + 1)]Cg %, (see p. 59).
By the rule of product the number of elements in the sth class is

1
stk —s+ 1)

Since the k classes contain a total of [1/(k + 1)]Cy good permutations, it
follows that

=1 pk—s
C23—202k—2s M

k k 1 o
Z S(k _‘_—t_ 1) 023120 k—23 — C;ck . (21)
s=1
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If we put

| _
mczs— T,

then Formula (21) takes the form
T Tea + Wi + -+ Ty Ty = T (22)

Another relation for the C is obtained by separating into classes the good
permutations of m d’s and & k’s. Let [ be a given number, | <! < m. We put
in the sth class all good permutations with just s d’s among the first / elements.
Then the first / elements contain ! — s &’s. Since the number of k’s cannot be
less than the number of d’s, we must have 0 <C 2s < /.

We compute the number of permutations in the sth class. Each of these
permutations consists of two parts, The first part is formed of the first / letters and
the second part is formed of the remaining m 4+ & — [letters. Of the first / letters,
! — sare F’s and s are d’s. Since the permutation is good, its part consisting of the
first [ letters is also good. The number of good permutations of / — s A’s and
sd’sis [(I —2s + 1)/(I — s + 1)]C].

Observe that the first part of a permutation in the sth class has a surplus of
(! —s) — s =1 — 2s I’s. This means that the second part of the permutation
determines a good permutation of [ — 2s k’s followed by m + k — [ elements of
which & — [ | s are #’s and m — s are d’s. The number of such permutations
can be computed from Formula (17) with ¢, % and m replaced by
I —2s, Rk —1+s, and m — s, respectively, and turns out to be equal to
Crt , — Cmi+—t-1 By the rule of product, the number of permutations in the
sth class is

R oo, - ept ™

Since the number of good permutations of md’s and kA's is
[(k — m 4+ 1)/(k + 1)]Cy,; and the number of classes is E(//2) (as usual, E(I/2)
denotes the integral part of //2), it follows that

E(l/2)
=25+ 1 errmes sl k—m+1
Ea T—s11 CllCrii-y — Cmiiss = TEF1 Crsr - (23)

(Here we assign the value zero to all C¥ with p < 0.)
By using different ways of separating permutations into classes, the reader
will find it easy to establish analogous relations.
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Distributions and Partitions

In this chapter we consider problems which involve the separation of a series
of elements into a series of classes. Our task is to compute the number of ways
in which this can be done. There is a great deal of variety in this group of
problems. Sometimes the order of the elements in the various classes is essential
(for example, when signaling with flags it is important not only to choose the
right flags for a particular mast but also to arrange them in the right order on the
mast), and sometimes it is irrelevant (for example, a domino player is concerned
with the set of dominos at his disposal and not with the order in which he
picked them from the pile). Sometimes the order of the classes plays a role
(for example, participants in a domino game are seated in a definite order and it is
important te know who gets a particular set of dominos), and sometimes it
plays none (for example, when I put snapshots, which I am about to mail,
into identical envelopes, the content of each envelope is important but the order
of the envelopes is not; the people at the post office are bound to shuffle them
thoroughly).

There may be other differences: We may or may not distinguish between
elements; we may or may not distinguish between classes of elements; we may or
may not allow the empty class (the class without elements). All these possibilities
account for the wide range of these problems.

A Domino Game

Twenty eight dominos are divided equally among 4 players. In how many ways
can this be done?

64
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The division of the dominos can be effected in the following manner: First all
the dominos are arranged in a row. Then the first player takes the first 7 dominos,
the second player takes the next 7 dominos, the third player takes the following
7 dominos, and the fourth player takes the remaining 7 dominos. It is clear that
in this way we can realize all possible ways of dividing the dominos.

At first glance it might appear that the number of ways in which the dominos
can be distributed is equal to 28!, the number of permutations of 28 objects.
This, however, is not the case. After all, the first player does not care whether
the first domino he picks up is the domino 6 : 6 or the domino 3 : 4; what
interests him is what 7 dominos he ends up with. This means that an arbitrary
permutation of the first 7 dominos does not affect the distribution of the dominos.
The same is true of a permutation of the second group of 7 dominos, of a
permutation of the third group of 7 dominos, and of a permutation of the last
group of 7 dominos. By the rule of product there are (7!)* permutations of the
dominos which do not affect the distribution of the dominos. It follows that there
are 28!/(7!)* ways of distributing the dominos. This number is approximately
equal to 4.7 - 10,

This result can be obtained in a different way: The first player chooses 7 out
of 28 dominos. Since he is not concerned with the order of the dominos, he has
Cl, choices. Then the second player chooses 7 out of the remaining 21 dominos
and so has CJ, choices. The third player chooses 7 out of 14 dominos and so has
C], choices. The last player has C] , that is, one choice. By the rule of product the
number of possibilities is

28! 211 141 28!

7 7 o o . —
CsCnCraCr = 21170 14T LT (T

If we apply the same type of argument to the game of preference (where there
are 32 cards, each of the 3 players gets 10 cards, and 2 cards are set aside), then
we see that the number of deals is

32!
10! 10! 10! 2!

= 2,753,294,408,504,640.

Some readers may think it a waste of time to study card games. To these
people we wish to point out that combinatorics and probability have their
origin in the study of games of chance. The game of dice, card games, and the
game of heads or tails gave rise to problems which outstanding mathematicians
like Pascal, Bernoulli, Euler, and Chebyshev used to refine the ideas and methods
of combinatorics and probability. Also, many of the ideas of game theory (a
branch of mathematics with many applications in economics and military
strategy) were the result of the study of very simple card games.
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Putting Things in Boxes

The domino and preference problems just studied belong to the class of
combinatorial problems which involve putting things in boxes. The general
formulation of such problems is as follows:

Given n different objects and k boxes. n, of these objects are to be put in the first
box, n, in the second box,..., n, in the kth box, with ny + n, + - +n, = n. In
how many ways can this be accomplished ?

In the domino problem the players were the counterpart of the boxes, and the
dominos were the counterpart of the objects. Reasoning as before, we conclude
that the answer to the general problem is

n!
mlngl omyl

P(ny, ny oy my) = (1

We came across this formula earlier when we solved the following, seemingly
different, problem.

We are given objects of k types. What is the number of permutations of n, objects
of the first type, n, objects of the second type,..., n; objects of the kth type?

Here, too, the answer is given by the formula

n!
!t m !’

P("’l ) n2 ey nlc) =

where n = n; + n, + -+ + n; (see p. 24). In order to establish the connection
between the two problems, we number the n positions which can be occupied by
our objects. Each permutation of the z position numbers determines a division
of these numbers into & classes: the first class consists of the numbers of the
positions occupied by the elements of the first type, the second class consists
of the numbers of the positions occupied by the elements of the second type,
and so on. This connection between permutations with repetitions and the
placing of the numbers of the positions in “boxes” explains the fact that the
solutions of both problems are given by the same formula.

A Bougquet

In the problem of placing objects in boxes we supposed the number of objects
placed in a given box known (for example, we supposed the number of dominos
selected by each player known). In most distribution problems these numbers are
not given.

Two children collected 10 camomiles, 15 cornflowers, and 14 forget-me-nots.
In how many ways can they divide the flowers?
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It is clear that the camomiles can be divided in 11 ways (the first child may
choose no camomile, 1 camomile, 2 camomiles,..., all 10 camomiles), the
cornflowers in 16 ways, and the forget-me-nots in 15 ways. Since flowers of each
kind are chosen independently, it follows by the rule of product that there are
11 -16 - 15 = 2640 ways of dividing the flowers.

Some of these ways of dividing the flowers are downright unfair; surely, it is
not fair if one of the children gets no flowers at all. Therefore, we impose the
restriction that each child must get at least 3 flowers of each kind. Then the
camomiles can be divided in 5 ways (the first child can get 3, 4, 5, 6, or 7
camomiles), the cornflowers in 10 ways, and the forget-me-nots in 9 ways. This
gives 5 10 - 9 = 450 ways of dividing the flowers.

In general, if there are 7, objects of one kind, 7, objects of another kind,..., 7,
objects of a kth kind, then these objects can be divided between two people in

(m + D(my 4 1) - (e £ 1) )
ways. In particular, if all the objects are different and there are k of them, then
n, = ny = - = n, = |, and this means that the objects can be divided in
2k ways,

If we impose the restriction that each of the two people is to get at least s,
objects of the first kind, s, objects of the second kind,..., s; objects of the kth
kind, then the number of ways in which the division can be carried out is

(my — 281 + D)(mp — 28, + 1) = (me — 25 4 1). 3)

We leave it to the reader to prove these assertions.

The Number of Divisors

Formula (2) enables us to solve the following problem in number theory:

Find the number of divisors of a natural number N.

Let N = pp1py2 -+ pix, where p, ..., p, are distinct primes (for example,
360 = 2% - 32 - 5), If we write N as a product of two factors N; and N, , then the
primes are divided between N; and N, . Specifically, if the prime p; enters
N; to the power m;, j = 1,..., &, then

N = (p;nl P"':k)(pfl_ml p;ik—mk)_

This means that, from the combinatorial point of view, writing N as a product
of two factors amounts to dividing n, objects of one kind, 7, objects of another
kind,..., n; of objects of a kth kind into two parts. Formula (2) shows that this
can be done in (n; + 1) - (#, + 1) ways. Hence the number of divisors of a
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natural number N = pf1 -+ piis (n, + 1) -*- (m + 1). This number is denoted
by the symbol #(N).

Picking Apples

Three children picked 40 apples. In how many ways can the children divide the
apples if all the apples are supposed alike (that is, our concern is only with the
number of apples obtained by each child) ?

To solve this problem we proceed as follows: We add 2 identical pears to the
apples and then permute the 40 apples and the 2 pears. By the formula for
permutations with repetitions we see that the number of such permutations is

42!

P(40,2) = Ch = o757

= 861.
Each of these permutations determines a division of the apples: The apples
preceding the first pear go to the first child, the apples between the two pears
go to the second child, and the apples following the second pear go to the third
child. It is clear that different permutations determine different ways of dividing
the apples. It follows that the apples can be divided in 861 ways. It may happen
that one (or even two) of the children won’t get any apples. For example, if one
of the pears comes first in the permutation, then the first child gets no apples, and
if one of the pears comes last in the permutation, then the third child gets no
apples. If no pear is in the beginning or at the end of the permutation but both
pears occur together, then the second child gets no apples. We leave it to the
reader to decide what happens if both pears occur together in the beginning of
the permutation or at the end of the permutation.

A similar argument shows that # like objects can be divided among k people in

Pm,k — 1) = Cpppy = Ciiia 4)

ways.

To assure a measure of fairness, we now require that each person receive
at least r objects. Then there are n — k7 objects which can be distributed in an
arbitrary manner. We know that this can be done in C*7} . = CF3 4
ways.

In particular, if each of the k people is to receive at least I object, then the problem
has CE71 solutions.

The last result can be arrived at differently. Let us line up the z given objects
in a row. There are n — | spaces between the successive objects. If we place
dividers in 2 — 1 of these spaces, then the row of objects is partitioned into %
nonempty parts. The first part goes to the first person, the second part goes to the



Sending Photographs 69

second person, and so on. Since there are C*~1 ways of placing # — 1 dividers in
n — |1 spaces, it follows that the number of distributions is C*~] .

Picking Mushrooms

In order to find the number of ways of distributing objects of different kinds
we must compute the number of ways of distributing objects of each kind and
then multiply these numbers. By way of example we solve the following problem:

In how many ways can one divide 10 meadow mushrooms, 15 button mushrooms,
and 8 truffles among 4 children?

Using the results in the previous section we see that the number in question is

C3LC3.CE, = 41,771,040.

If each child is to get at least one mushroom of a kind, then the corresponding
number is

C3C3,C? = 1,070,160.

If n different objects are divided without any restrictions among % people,
then each object can be handed out in k& ways (since there are % possible
recipients). But this means that the problem has &” solutions.

For example, 8 different pastries can be divided among 5 people in
5 = 390,625 ways.

Sending Photographs

I wish to send a friend 8 different photographs. In how many ways can this be
done if the photographs are to be placed in 5 different envelopes?

This problem is similar to the last problem in the previous section. We would
therefore be inclined to say that the answer to the present problem is also
5% = 390,625. However, one could hardly be expected to mail empty envelopes,
so it is natural to require that each envelope contains at least 1 photograph. To
compute the answer, we make use of the principle of inclusion and exclusion
(the answer Cy_; is incorrect since the photographs are different).

First we compute the number of distributions of the photographs in which
specified envelopes are empty (and the remaining envelopes are empty or not).
This number is equal to the number of ways in which 8 different photographs
can be placed without restriction in 5 — r envelopes. The latter number is
(5 — 7 (see above). On the other hand, there are Cf ways of choosing 7 out of
5 envelopes. By the rule of product the number of distributions in which
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envelopes are known to be empty is C3(5 — 7). By the formula of inclusion and
exclusion, the number of distributions without empty envelopes is

58 _Cl.48 4 C2-38 — CP 2% 4 CE- 1P = 126,000.

Similarly, disallowing empty envelpes, we can send 7 different photographs
in & different envelopes in

— CYk — 1)" + C2k — 2)" — -+ + (—1)* k1. | (5)

ways.

We leave it to the reader to analyze the following problem:

Given n, objects of the first kind, n, objects of the second kind,..., ng objects of the
sth kind. In how many ways can these objects be divided among k people if each
person is to get at least 1 object?

The answer to this problem is given by the formula

k— —1 1,7k—2 k-2
Cn1+k—1C ngtk-1 """ Cn,+k—1 — CkCn1+k 2C ngtk-2 ° Cn,+k—2

(6)
+ Clzccfﬁk— Cr. a3 ° C:::—Ek—s — (=D

For example, the number of ways in which 8 apples, 10 pears, and 7 oranges
can be divided among 4 children if each child is to get at least | fruit is

C?1Cfacfo - CinOCfZCS + Cicgclllcg _ Ci’ = 5,464,800-

Flags on Masts

In the distribution problems discussed so far the order of the elements in
a box was irrelevant. However, in some of these problems this order must be
taken into consideration.

n different signal flags are displayed on k masts. The meaning of a signal depends
on the order of the flags. In how many ways can the flags be displayed if all of the
Sflags must be used but some of the masts may be flagless?

Each display of the flags can be realized in two stages: First we select a suitable
permutation of the flags and then place appropriate numbers of the flags on the
masts in the order determined by the permutation. Since n different flags can be
permuted in #! ways and # identical flags can be distributed on % masts in
Ck% ) ways, it follows by the rule of product that the number of the displays
in question is

E—1)! .
W i = 2T = A, ()
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Quite generally, the number of ways of placing n different objects in k different
boxes with the objects in each box arranged in a definite order is AL7%_, .

The same result can be obtained in a different manner: We add to the » objects
k — | identical spheres and consider all the permutations of the resulting set of
n + k — | objects. The distribution determined by one of these permutations
is the distribution in which the objects in the first box are the objects in the
permutation located before the first sphere (if the first element in our permutation
is a sphere, then the first box will be empty), the objects in the second box are
the objectsin the permutation located between the first and second spheres,..., the
objects in the kth box are the objects in the permutation following the last sphere.
It is clear that in this way we obtain all of the required distributions. But then
their number is equal to the number of permutations of # different objects and %

identical spheres, that is

(n+k— 1)
1T 11k — D)

P, Ly LE—1) =

n times

. oan
- An+k—1 .

Similar reasoning applies to the case when there is at least one flag on each
mast (or at least one object in each box) except that now the factor C¥7% | must
be replaced by the factor C¥71; that this is so is implied by the formula derived
on p. 68. Another way of arriving at this answer is to count the number of ways

of placing dividers in & — | of the » — | spaces between 7 objects.

Count of All Signals

So far we assumed that in transmitting a signal we invariably used all the flags.
However, some signals may not require the use of all the flags. This suggests the
problem of computing the number of signals which can be transmitted by using
some or all of n flags. As before we allow flagless masts.

We separate the signals into classes according to the number of flags involved
in the transmission of a particular signal.

By Formula (7) the number of signals transmitted by means of s flags is 43, ;_;
(there are k2 masts). Since s flags can be chosen out of # flags in C; ways, the
number of signals in the sth class is C3 A, ,_; . It follows that the number of
signals in all the classes is

Codiy + Codi + CrAin + - + Codg e - 8)
For example, with 6 different flags on 3 masts we can transmit

| + Cod; + Cidi + C3A4% + Cedg + CoA3 + CiA§ = 42,079

signals.
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If we disallow empty masts then in place of Formula (8) we obtain formula

CECEk! 4 CERCE YR + D + CEPRCE(R +2)! + -+ + CrCEinl. (9)

Various Statistics

The problem of placing things in boxes is of great importance in statistical
physics. Statistical physics studies the distribution of physical particles in relation
to certain properties. An example of a problem in statistical physics is the deter-
mination of the fraction of molecules of a gas at a given temperature which
have a certain velocity. The possible states (known as phase states) can be thought
of as tiny cells and each particle belongs to one of these cells. (In what follows,
k denotes the number of cells and z the number of particles in a sample.)

The statistics which applies in a particular situation depends on the nature of
the particles involved. The classical statistical physics of Maxwell and Boltzmann
regards all particles as different from one another and is applicable, among others,
to molecules of a gas. We know that n different particles can be placed in % cells
in k™ ways. If for a given energy all of these 2* ways of placing the particles are
assigned the same probability, then we speak of Maxwell-Boltzmann statistics.

Not' all particles are governed by Maxwell-Boltzmann statistics. Photons,
atomic nuclei, and atoms containing an even number of particles are governed by
the statistics due to Einstein and the Indian scientist Bose. In Bose—Einstein
statistics particles are indistinguishable, so that we are not concerned with the
identity of the individual particles but only with the number of particles in
each cell. This means that the count of admissible distributions is the same as the
count of distributions of apples discussed on p. 68 and is therefore equal to
Ck i1 = CP .. In Bose-Einstein statistics all of these distributions are
assigned equal probabilities.

Particles such as electrons, neutrons, and protons are not governed by either
of the above statistics. In the case of these particles, each cell contains no more
than one particle, and each distribution satisfying this condition is assigned the
same probability. The number of different distributions is C} . This statistics is
called the Dirac-Fermi statistics.

Partitions of Numbers

In most of the distribution problems discussed earlier the objects were
supposed distinguishable. Now we will treat distribution problems where the
objects are supposed indistinguishable. This allows us to replace distributions
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of N objects with partitions of the natural number N into summands of natural
numbers, that is, with ways of writing N as a sum of natural numbers.

There are many different problems of this type. We may pay attention to the
order of the summands or disregard it. We may restrict our attention to partitions
with an odd number of summands, or to partitions with an even number of
summands. We may allow partitions with arbitrary summands or partitions with
different summands only, and so on. The basic technique for the solution of
partition problems is to reduce the solution of the original partition problem to
the solution of a partition problem involving a smaller number or to a partition
problem involving a smaller number of summands.

Mailing of Printed Matter

Postage on some printed matter is 18 cents. We have at our disposal (unlimited
amounts of ) 4-cent stamps, 6-cent stamps, and 10-cent stamps. In how many ways
can we paste on the required 18 cents worth of stamps if two ways which differ in the
order of the stamps are regarded as different ?

Let f(N) denote the number of arrangements of 4-, 6-, and 10-cent stamps
which add up to N cents. We claim that

fIN) = f(N —4) + f(N — 6) + f(N — 10). (10)

Consider an arrangement of the stamps in which the last stamp is a 4-cent
stamp. Then the value of the remaining stamps is N — 4 cents. Conversely,
addition of a 4-cent stamp to an arrangement of stamps worth N — 4 cents
yields an arrangement of stamps worth N cents, Also, different arrangements of
stamps worth N — 4 cents yield different arrangements of stamps worth N cents.
It follows that the number of the required arrangements terminating in a 4-cent
stamp is f(N — 4).

The same type of argument shows that the number of the required
arrangements terminating in a 6-cent stamp is f(IN — 6), and the number of the
required arrangements terminating in a 10-cent stamp is f(N — 10). Since
each of our arrangements terminates in a 4-, 6-, or 10-cent stamp, it follows by
the rule of sum that f(V) is indeed equal to the sum in (10).

Relation (10) enables us to reduce the problem of computing the number of
arrangements of stamps which add up to NN cents to similar problems in which
the stamps add up to less than N cents. For small values of N it is easy to compute

f(N) directly. Specifically,

=1, f=f2=/3=0 f@=1 J©O =0
fO=1, f0H=0 JfE=1 fO =0
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(The equality £(0) = 1 reflects the fact that the only way to get 0 cents is not to
paste on any stamps. The equalities f(1) = f(2) = f(3) =f(5) =f(7) =f(9) =0
reflect the fact that using 4-, 6-, and 10-cent stamps we cannot get arrangements
of stamps which add up to 1, 2, 3, 5, 7, or 9 cents.) Using these values of f(N)
forN =0,1,2,3,4,5,6,7, 8,9, we see that

f(10) = £(6) + f(4) + f(0) = 3.
Next we find that

faAN) =f(N) +f(5) +f(1) =0,
fA2) =f(®&) +f(6) +f(2) =2

and so on. Eventually we obtain the value f(18) = 8. The eight arrangements of
the stamps are:

10,4,4; 4,10,4; 4,4,10; 6,4,4,4; 4,6,4,4; 4,4,6,4; 4,4,4,6; 6,6,6.

We note that the values of f(N) for N = 1,2, 3,4, 5,6, 7, 8, 9 can be obtained
without direct computation. Observe that a nonnegative number of stamps

cannot add up to a negative number of cents, so that f(N) = 0 for N < 0.
We saw that f(0) = 1. Therefore

f(D) =f(=3) + /(=5 + f(=9) =0
Similarly, f(2) = 0,f(3) = 0. For N = 4 we have

f@) =f0)+ f(—2) + f(—6) =1,

and so on.

The General Postage Problem

The preceding problem is a special case of the following problem.

Given (unlimited numbers of) stamps of k different denominations n, , n, ,..., n; .
Find the number of arrangements of stamps which add up to N cents if two arrange-
ments which differ in the order of the stamps are regarded as different.

In this case f(INV) satisfies the relation

JIN) =f(N —m) + f(N —ng) + = + f(N — m). (11)

We have f(N) = 0 for N << 0 and f(0) = 1. To compute f(N) for a preassigned
value of N we use (11) to compute successively the numbers £ (1), £(2),..., f(N-1).
Then a final application of (11) yields the value of f(N).
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We consider the special case of this problem whenn, = 1,n, = 2,..., n, = k.
The resulting problem is the same as the problem of computing the number of
partitions of the number N into summands selected from among the numbers
1, 2,..., & with the provision that two partitions which differ in the order of their
summands are to be viewed as different. We denote the number of such partitions
by @(k; N). Relation (11) implies that

ok N) = pls N— 1) + gk N —2) + = + o(ls N— k). (12)
Also,
pk; 0) =1, and  ¢(k; N) =0, for N <0.
The computation of ¢(k; N) is simplified by noting that
pks N —1) =@(l; N —2) + = + (ks N — k) + (ks N — k — 1).
Using this relation we see that
@(k; N) = 20(k; N — 1) — (ks N — k — 1). (13)

It is clear that the summands cannot exceed N. Hence @(N; N) is the number
of partitions of IV into positive integral summands (including the “partition”
N = N) with order taken into consideration. The number of partitions involving
s summands is C%%; (see p. 68). Therefore

(N, N) = Cyy + Cyy + - + CRT1 =2V

We have shown that when order is taken into consideration, then the number
of partitions of a natural number N is 2¥-1, For example, there are 25-! = 16
(ordered) partitions of the number 5:

5—=75 5=34+141 S5=1+212
5—44+1 5=14+3+1 5=24+1+1+1
=144 5=14143 S5=142+1+1
5=243 5=24241 S=1+14+2+1
5=34+2 5=24142 S=14+L14+1+2
5=141414+141.

Combinatorial Problems in Information Theory

In information theory we find it necessary to solve the following problem
which is very similar to the main problem in the previous section: A message is to
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be transmitted using symbols of various types. Transmission of a signal of the
first type takes £, time units, transmission of a signal of the second type takes ¢,
time units,..., transmission of a signal of the kth type takes ¢, time units. How
many different messages can be transmitted in T time units? Here we have in mind
only “maximal” messages, that is messages to which no signal can be added
without exceeding the time limit 7.

Let f(T) denote the number of messages whose “transmission time” is 7.
Reasoning as in the problem about stamps we see that

D) =fT—t)+ =+ /(T —1). (14)
Also, /(T) = 0 for T < 0 and £(0) = 1.

Problem of the University Applicant

A university applicant is required to pass 4 examinations. The numerical passing
grades are 3, 4, and 5. The minimal cumulative score for admission to the university
s 17. In how many ways can the applicant accumulate the necessary 17 or. more
points?

This problem is similar to the problem about stamps except that the number
of “stamps” which ‘““add up to 17 points” is prescribed. Let F(k; N) denote the
number of ways in which it is possible to accumulate N points after passing
examinations. Reasoning as in the case of Formula (11) on p. 74 we find that

FB;N)=F(k —1;N —3)+F(k— 1;N— 4) - F(k — 1; N — 5).

This relation and the fact that F(2; 11) = 0 and F(2; 10) = 1 yield

F(4;17) = F(3; 14) + F(3; 13) + F(3; 12)
— F(2; 11) + 2F(2; 10) + 3F(2; 9) + 2F(2; 8) + F(2; 7)
— 2 1 3F(2;9) + 2F(2; 8) + F(2; 7).

In turn, this yields
F(4;17) = 2 + 3F(1; 6) + 5F(1; 5) + 6F(1; 4) 4+ 3F(1;3) + F(1; 2).

Since F(1;6) = F(1;2) = 0, (F(1; 6) = 0 because the most one can earn in
1 exam is a 5. On the other hand, F(1; 2) = 0 because the least grade which
countsisa3),andF(1; 5) = F(1; 4) = F(1; 3) = 1, it follows that F(4; 17) = 16.
Similarly, F(4; 18) = 10, F(4; 19) = 4, and F(4; 20) = 1. This means that there
are 16 + 10 + 4 + 1 = 31 ways of passing the examinations.

There is another way of ariving at these results. It is easy to see that there are
two essentially different ways of accumulating 17 points: one way is to earn
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2 grades of 5, 1 grade of 4, and 1 grade of 3, and the other is to earn 1 grade
of 5and 3 grades of 4. These sets of grades may be associated with the 4 examina-
tions in various ways. Since

4! 41

i e o 8

P(2,1,1) + P(1,3) =

it follows that 17 points can be earned in 16 ways. In this way we can also compute
the number of ways of earning 18, 19, and 20 points, respectively.

In general, let F(m; N) denote the number of partitions (with order taken into
consideration) of N into m summands each of which is equal to one of the numbers
ny , My ,..., M . Arguing as in the case of relation (11), we see that

Fm;Ny=Fm —1;N—mn) + -+ Fim— 1; N — n). (15)

In particular, if n, = 1, n, = 2,..., n;, = k, then we obtain the number of
(ordered) partitions of N into 7 summands each of which is equal to one of the
numbers 1, 2,..., k. If we denote this number by F(m; N; k), then we have

Fim; N, R) =F(m — 1; N — 1; k)
+Fm —1;N—2;kR)+ = +Fm—1;N—Fk; k). (16)
By imitating the argument on p. 75 we obtain the following simpler version
of (16):
F(m; N; k) = F(m; N — 1; k)
+Fm—1;,N—1L;k)—Fm—1;N—k—1;k. (17

Now we consider partition problems in which we identify partitions differing
only in the order of the summands.

Paying for a Purchase

A purse contains single coins of the following denominations: 1, 2, 3, 5, 10, 15, 20,
and 50 cents.™ In how many ways is it possible to pay with these coins for a 73 cent
purchase?

Here the order of the coins is irrelevant. What matters is which coins are used
to make up the required total. We denote by

F(n,,ny,...,n,; N)

* Ignoring the realities of our system of coins is both harmless and convenient (Trans-
lators).
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the number of ways of paying N cents with coins of different denominations
selected from among coins whose denominations are n, , 7, ,..., 7, cents.

We separate all the payments into two classes: the class of payments which
include an #n,-cent coin and the class of payments which do not include an
n,~cent coin. If a payment includes an #,,-cent coin, then the sum of N — n,,
cents must be paid with coins whose denominations are restricted to
7y , My yerey Nyy_y Cents, and this can be done in F(n, , n, ..., 2, _1; N — m,,) ways.
If a payment does not include an #n,,-cent coin, then the full amount of N cents
must be paid with coins whose denominations are restricted to 7, , 7y ,u.., 7,3
cents, and this can be done in F(n, , n, ,..., #,,_;; N) ways. Hence

F(ny,ng ey tty; N)=F(n,, 15,000, 8 _1; N —m,) + F(ny 19,00, 1,,_15 N).  (18)

In the original problem we were required to select coins from a total of m coins.
Relation (18) reduces this total to m — 1. Repeated use of (18) enables us to
reduce this total to m — 2, and so on. Eventually we reach the point when there
is nothing to pay or when the total of coins to select from is down to one. Each
of the last two problems has a unique solution. Also, many summands vanish
in the process of computation; in fact, if n, +n, + *»* + n,, << N then
F(n,, ny,....,n,; N) =0 (since the coins add up to less then the required
payment), and if n,, > N, then (18) reduces to

F(n,, ny 0., s N) = F(ny , 1y .0, 13 N)

(since n,, must not be included in a payment).
We apply the method just outlined to the solution of our problem. By Eq. (18)
we have

F(1,2,3,5,10, 15, 20, 50; 73) = F(1, 2,3, 5, 10, 15, 20; 23)
1+ F(1,2,3, 5,10, 15, 20; 73)
—F(1,2,3,5, 10, 15, 20; 23)
(14-24-34+5+10+15+20 < 73 implies that F(1, 2, 3, 5, 10, 15, 20; 73) = 0).

Again,
F(1,2,3,5,10, 15, 20; 23) = F(1, 2, 3, 5, 10, 15; 3) + F(1, 2, 3, 5, 10, 15; 23).
The first of these summands is

F(1,2,3,5,10,15; 3) = F(1, 2, 3; 3)
=F(1,2;0) + F(1, 2; 3)
=1 4+F(1;3) + F1;1) = 2.
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Now,

F(1,2, 3,5, 10,15;23) = F(1, 2, 3, 5, 10; 8) - F(1, 2, 3, 5, 10; 23)
= F(1,2,3,5,10; 8)
(14+243+5+10 <23 implies that F(1, 2, 3, 5, 10; 23) = 0), and
F(1,2,3,58) =F(31,2, 3;3) =2.

All in all, we have
F(1, 2, 3, 5, 10, 15, 20, 50; 73) = 4.

Indeed, we can pay the required 73 cents with a 50-, a 20-, and a 3-cent coin;
with a 50-, a 20-, a 2-, and a 1-cent coin; with a 50-, a 15-, a 5-, and a 3-cent coin;
and with a 50-, a 15-, a 5-, a 2-, and a 1-cent coin.

Purchase of Candy

A store sells various kinds of candy: 3 kinds sell for 2 cents a prece and 2 kinds sell
for 3 cents a piece. In how many ways can one buy 8 cents worth of candy if no two
pieces of candy are tobe of the same kind ?

The required computations are:

F(2,2,2,3,3;8) =F(2,2,2,3;5) + F(2, 2,2, 3; 8)
=F(2,2,22) +2F(2,2,2;5) + F(2,2,2; 8)
—F(2,2,2;2) = F(2,2;0) + F2,2;2)
=1+ F(2;0)+ F(2;2) = 3.

Each of the 3 ways of buying candy consists in combining two 3-cent pieces of
different kinds with a 2-cent piece.

Consider next the following problem:

A purse contains 3 two-cent coins and 2 three-cent coins: In how many ways can
one pay 8 cents using these coins?

At first sight this problem seems to be identical with the previous problem.
However, everything depends on whether or not we distinguish between coins
of the same denomination: If we do, then our present problem is indeed identical
with the previous problem, and there are 3 ways of paying; if we do not, then
there is only one way of paying, namely by combining 2 three-cent coins and
1 two-cent coin,

These examples show that the nature of a payment problem depends on
whether or not we distinguish between coins of the same denomination. The
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method discussed in the previous section applies only when the various coins are
viewed as different regardless of their denominations. Now we will show what
method to use when we don’t distinguish between coins of the same
denomination.

A purse contains 10 two-cent coins and 5 three-cent coins. In how many ways can
we pay the sum of 22 cents if we do not distinguish between coins of the same
denomination ?

We denote the number of solutions by the symbol ¢(10 - 2, 5 - 3; 22) (10 - 2
indicates that there are 10 two-cent coins, and 5 -3 indicates that there are
5 three-cent coins). We separate the ways of effecting payment into classes in
accordance with the number of 3-cent coins used in a payment. For example,
if 2 three-cent coins are used, then the remaining 16 cents are paid with 2-cent
coins, and if all 5 three-cent coins are used then it remains to pay 7 cents. If
no 3-cent coins are used in a payment, then the full sum of 22 cents must be paid
with 2-cent coins. This leads to the equality

&(10 - 2,5 - 3;22) = P(10 - 2; 22)
+ @(10 - 2;19) + D(10 - 2; 16)
+ D(10 - 2; 13) + D(10 - 2; 10) + D(10 - 2; 7). (19)
(The 6 summands on the right-hand side of (19) correspond to the 6 classes of
payments.) Observe that 22 cents cannot be paid with 10 two-cent coins; that

an odd sum can’t be paid with 2-cent coins; and that an even sum can be paid
with 2-cent coins in just one way. With these facts in mind we see from (19) that

$(10 - 2; 5+ 3;22) = 2.
The 2 ways are
22 =8:24+2:-3=5-24+4"-3,

Getting Change

Consider the following problem:

In how many ways is it possible to change a 10-cent coin into I1-, 2-, 3-, and
S-cent coins?

This problem is similar to the problem at the end of the last section except
that now no restrictions are imposed on the number of coins of various denomina-
tions. To indicate this fact we denote the number of solutions by the new symbol
&(1, 2, 3, 5; 10). Reasoning as in the preceding section, we obtain the relation

®(1,2, 3, 5;10) = ¥(1, 2,3; 10) + (1, 2,3; 5) + &(1,2,3;0)  (20)
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(the 3 summands on the right-hand side of (20) reflect the fact that the change
may contain no 5-cent coin, 1 five-cent coin, or 2 five-cent coins). It is clear that
®(1, 2, 3;0) = 1 (there is just one way of changing a 0 coin).

To compute &(1, 2, 3; 5) we separate the ways of changing a 5-cent coin into
1-, 2-, and 3-cent coins into classes in accordance with the number of 3-cent
coins in the change. This yields the relation

(1, 2,3; 5) = ¥(1,2; 5) + ¥(1, 2; 2)

(the first summond corresponds to the case when there are no 3-cent coins in
the change, and the second summand corresponds to the case when there is just 1
three-cent coin in the change).

Continuing these computations we obtain the relation

®(1,2, 3; 5) = B(1; 5) + D(1; 3) + B(1; 1) + D(1; 2) + O(1; 0).

Since the value of each summand in this sum is 1 (the change consists of pennies
only!), it follows that @(1, 2, 3; 5) = 5. A similar computation shows that
&(1, 2, 3; 10) = 14. This means that there are 14 454 1 = 20 ways of
changing our 10-cent coin.

In place of (20) we could take the relation

&(1,2, 3,5 10) = &(1, 2, 3; 10) + &(1, 2, 3, 5; 5).

This relation states that the ways of changing our 10-cent coin can be separated
into two classes: the class of ways in which no 5-cent coin is used and the class
of ways in which at least one 5-cent coin is used.

In general, if the change adds up to N cents and consists of coins of denomina-
tions 7, , 7, ,..., M cents, then the analog of Eq. (20) is

D1y yoey Ny s My N) = D1y uuey y_13 N) + P(1y oy gy, 35 N — 1), (21)

Relation (21) shows that if no n;-cent coin is included in the change, then the
full sum N is made up of coins of denominations #, , 7, ,..., #;_; , and if at least
one n;-cent coin is used, then the remainder N — »n; may include coins of all the
denominations 7, , 7y ,..., %5_q , My -

If, as on p. 77 the change must consist of different coins, then (21) is replaced
with the following analog of Formula (18):

F(ny ooy iy, ny; N) = F(ny ..., i3 N) + F(ny ooy 3 N — mp). (22)

(Unordered) Partitions of an Integer

We consider a special case of the problem about change when all the coins
from 1 to n cents are admissible. In other words, we consider the following
problem:
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Find the number of partitions of a natural number N into summands selected from
among the numbers 1, 2,..., n (order of the summands is immaterial).

We denote the number of such partitions by [I7; in particular, we define
IT* = 1. Observe that the number of all partitions of N is IT§ (no partition of N
can include a summand > N). This means that if » > N, then IT} = II¥ .
Also, IT}, = 1.If 1 < n < N, then

Iy =17 + Iy, (23)

In fact, if # is not used as a summand, then NN is partitioned into summands
selected from among the numbers 1, 2,...,  — 1, and the number of such
partitions is /Iy *. On the other hand, if # is used as a summand, then N — n is
partitioned into summands selected from among the numbers 1, 2,..., #, and the
number of such partitions is T . .

Now we require that all the summands in a partition must be different. In this
case we denote the number of partitions by @} and put @7 = 1. Observe that if
n > N, then ®F = @Y (see above). Also, &1 =1 and &P}, = 0 for N > 1,
If 1 < n << N then we claim that

Oy = Oy + Oy, (24)

(the number n can appear as a summand only once). We leave the proof of (24)
as an exercise for the reader.

Using (24) and the above few facts we can evaluate @}, for all values of zand N.
In evaluating ITy it is convenient to replace (23) with

My = M + I + b 4 o + Iy, 0 < N—kn<m, (25)

obtained by repeated application of (23). If in (25) N — kn = 0, then
Iy ., =y =110 < N — kn < n, then IT}, ,, = IIN_¥"  Using (25) we
evaluate succesively I72 for all required N, then IT , and so on.

Use of Graphs

The original methods of proving theorems about partitions of an integer were
very complicated. Just as in other areas of mathematics, so here too, the intro-
duction of geometric considerations simplified proofs and made them more
intuitive.

Every partition of an integer can be represented by means of a graph consisting
of rows of points. Each row of the graph has as many points as there are 1’s
in the corresponding summand of the partition. For example, the partition
7 =1+ 1+ 2+ 3is represented by the graph in Fig. 10.
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Since we disregard the order of the summands in a partition, we can arrange
the rows of its graph in such a way that the number of points in each successive
row does not decrease. Also, we can line up the rows so that the first points of
the rows form a vertical column, Such graphs will be called normal.

Graphs enable us to give easy proofs of many properties of partitions. Consider,
for example, the assertion that the number of partitions of an integer N into at most
m summands is the same as the number of partitions of the integer N | m into
m summands. The graph of a partition of NV into at most m summands consists of N
points arranged in at most m rows. If we add to such a graph a column of m
points (see Fig. 11 which illustrates this transformation for the case N = 5,

®

®
A

®
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m = 4), then we obtain a graph consisting of N + m points arranged in m rows.
Conversely, if we subtract the first column from an m-rowed graph consisting
of N 4+ m points, then we obtain a graph consisting of N points arranged in at
most m rows. This establishes a one-to-one correspondence between the two
classes of graphs. But then each class contains the same number of graphs.
Our assertion follows.

The following result (due to Euler) is somewhat harder to prove:

The number of partitions of N into at most m summands is equal to the number
of partitions of N + m(m + 1)/2 into m unequal summands.

Every partition of N into at most m summands is represented by means of
a graph consisting of N points arranged in at most m rows. We add to such a
graph an isosceles right triangle consisting of m rows and put the new graph
in normal form (Fig. 12 illustrates this transformation for the case N = 6,
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m = 4). Since the triangle contains m(m 4 1)/2 points, the resulting graph
contains N + m(m + 1)/2 points arranged in m rows of increasing length (the
length of a row is its number of points); this last assertion follows from the fact
that our final graph is the result of adding a graph with increasing row length
(the right isosceles triangle) to a graph with nondecreasing row length (the
original graph). Conversely, deletion of a right isosceles m-rowed triangle from
a graph of a partition of N ++ m(m + 1)/2 into unequal summands results in
a graph of a partition of N into at most » summands.

It is clear that we have established a one-to-one correspondence between the
graphs of the partitions of N into at most m rows and the graphs of the partitions
of N+ m(m -+ 1)/2 into m unequal rows. This shows that the two classes
contain the same number of graphs. This completes the proof.

Dual Graphs

By rotating a graph through 90° and putting the result in normal form we obtain
a new graph, the dual of the original graph. This transformation is illustrated
in Fig. 13.

Fi1c. 13

It is clear that by repeating this transformation we obtain the original graph.
Hence all graphs can be arranged in pairs of graphs dual to each other (with
some graphs self dual, that is, equal to their duals; see Fig. 14).
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It is clear that the rows and columns of a graph are, respectively, the columns
and rows of its dual.

Using duality of graphs we can compare partitions in which the magnitude
of the summands is subject to restrictions with partitions in which the number of
summands is subject to restrictions. For example, consider the assertion:

The number of partitions of N in which the summands do not exceed n is equal to
the number of partitions of N in which the number of summands does not exceed n.

For proof, note that a graph of a partition of N in which the summands do not
exceed n consists of NV points arranged in rows at most #z long. T'his means that
the graph has at most 7 columns. But then the dual graph has at most n rows,
that is, it corresponds to a partition of N into at most # summands.

A similar argument shows that the number of partitions of N into # summands
is equal to the number of partitions of N into summands not larger than »n of
which at least one is equal to =.

Next we consider partitions of N into even summands. Such partitions are
represented by graphs whose rows contain an even number of points. But then in
the dual graphs the number of rows of equal length is invariably even (see
Fig. 15). This proves that

Fic, 15

The number of partitions of N into even summands is equal to the number of
partitions of N in which each summand enters an even number of times.

A similar argument shows that

The number of partitions of N into odd summands is equal to the number of
partitions in which every summand other than the largest one enters an even number
of times and the largest summand enters an odd number of times.
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Euler’s Formula*

In connection with certain partition problems Euler studied the infinite

product
A=01—x)(1—x)1 — &) (1 —a™) . (26)

If we remove the parentheses in the first 22 factors of this product, then we
obtain the expression

A=[1—x—a*+ x5+ a7 — 212 — 215 522 | -]
X (1 — aB)(1 — x24) - (1 — &m) -,

where dots replace all summands in which the exponent of x exceeds 22, The
reason for this is that multiplication of the expression in square brackets by
1 —«%, 1 — «?4,..., does not affect the powers of ¥ whose exponent does not
exceed 22 but does affect the higher powers of x. Thus removal of all the
parentheses in (26) yields an infinite series whose first few terms are

1_x_x2+x5_|_x7_x12_x15_|_x22+..._ (27)

The expression in (27) suggests that two negative terms are followed by two
positive terms which are again followed by two negative terms, and so on. On
the other hand, the law of formation of the exponents of the successive terms of
the series is far more elusive. After a great deal of experimentation Euler found
that

If we write the infinite product

(1 — x)(1 — 22)(1 — a3) -+ (1 — &) -~

as an infinite sertes, then the only nonzero terms are the terms of the form
(— 1)kt 3" /2 gohere k s a natural number.

Euler’s result is very important not only in the theory of partitions but also
in the theory of elliptic functions and in other areas of mathematical analysis.
Most proofs of this theorem are rather difficult. We are about to give a very
simple geometric proof of this theorem. Before we do so we will find it convenient
to formulate the theorem in terms of the theory of partitions,

Upon removal of the parentheses in (26) and prior to any reductions in the
resulting series, the number of occurrences of 4V is equal to the number of
partitions of N into sums with different summands. Furthermore, the number of
occurrences of ¥V is equal to the number of such partitions with an even number
of summands, and the number of occurrences of —x¥ is equal to the number of

* This section can be omitted in a first reading.
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such partitions with an odd number of summands. For example, the partition
12 =5+ 4+ 2+ 1 corresponds to the occurrence of x!% thought of as the
product (—a%)(—x*)(—a%)(—x), and the partition 12 = 5 + 4 4 3 corresponds
to the occurrence of —x2 thought of as the product (—x°)(—x*)(—x?). It follows
that the coefficient of &V in (27) is equal to the difference between the number of
partitions of N into an even number of distinct summands and the number of
partitions of N into an odd number of distinct summands. Expressed in terms of
partitions, Euler’s theorem states that

If N is not of the form N = (3k% L k)[2, then the difference between the number
of partitions of N with an even number of distinct summands and the number of
partitions of N with an odd number of distinct summands 1is zero. If
N = (3% £ k)/2, then the corresponding difference is (—1)~.

Specifically, if % is even, then this difference is 1, and if % is odd, then this
difference is —1.

The proof is based on a method for converting a graph with an even number
of rows into a graph with the same number of points and an odd number of rows,
and conversely. Since the summands in any one of our partitions are distinct, its
graph can be thought of as a tower of trapezoids. We denote the number of
points in the top row of the graph by m, and the number of rows in the bottom
trapezoid by #n. For the graph in Fig. 16 we have m = 2 and n = 3.
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Suppose the graph consists of two or more trapezoids and that m < n. Then
we delete the top row and add one point to each of the last m rows of the bottom
trapezoid. The resulting graph has the same number of points as the original
graph, it has rows of different lengths, but the parity of its number of rows is
different from the parity of the number of rows of the original graph (see Fig. 16).
The same kind of transformation can be applied to a graph consisting of one
trapezoid provided that m < n» — 1; this case is illustrated in Fig. 17a.

Now suppose the graph consists of two or more trapezoids and that m > n.
Then we remove one point from each of the rows of the bottom trapezoid and
place these n points as a new row on top of our graph (this can be done because
the new top row has # points and the old top row has m > n points). The trans-
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formed graph has the same number of points as the original graph, it has rows
of different lengths, but the parity of its number of rows is different from the
parity of the number of rows of the original graph; this case is illustrated in
Fig. 17b. The same transformation can be applied to a graph with one trapezoid
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provided that n <{ m — 2. Inspection of Figs. 17a and 17b shows there is a
one-to-one correspondence between the transformations of the first type and the
transformations of the second type which links mutually inverse transformations;
if a graph admits one of a pair of corresponding transformations, then its image
admits the other transformation of the pair and the final image coincides with the
original graph. In other words, there are as many graphs of partitions of N which
admit one of our transformations and have an even number of rows as there are
graphs of partitions of N which admit one of our transformations and have an odd
number of rows. The graphs which do not admit any of our transformations
consist of single trapezoids for which m = n or m = n + 1; in the first case N,
the number of points in the graph, is (3722 — #)/2, and in the second case N is
(32 + n)/2 (see Fig. 18). Finally, there is at most one graph with a prescribed
number N of points which does not admit any of our transformations.

Our discussion shows that if N is not of the form (3#% + #n)/2, then it has as
many partitions with different summands and an even number of rows as it

* o o e o o o
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has partitions with different summands and an odd number of rows. If
N = (3n% 4+ n)/2 and = is even, then there is just one graph with N points which
admits none of our transformations and has an even number of rows; in that case
the number of partitions of N into an even number of distinct summands exceeds
by 1 the number of partitions of N into an odd number of distinct summands.
If N = (3#* £ n)/2 and 7 is odd, then the number of partitions of N into an
odd number of distinct summands exceeds by 1 the number of partitions of N
into an even number of distinct summands. This completes the proof.
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Combinatorics on a Chessboard

Walking in a Town

Figure 19 shows the plan of a town (such as, for example, the Australian capital
Canberra). The town consists of n X k rectangular blocks separated by n — 1
“horizontal’ streets and k — 1 “vertical” streets. A traveler wishes to get from A to
B along the shortest route. In how many ways can he do so?
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It is clear that regardless of his choice of route, the traveler must invariably go
“from left to right” or “up” and so must pass through % 4 » intersections
(including A4 but excluding B). Consider a route followed by our traveler, We
mark an intersection belonging to the route with a 1 or a 0 according as the
segment of the route following the intersection is vertical or horizontal. In this

920
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way, each route determines a unique sequence of 4 zeros and =z ones, and,
conversely, each sequence of % zeros and 7z ones determines a unique optimal
route from A to Bj; the route shown in Fig. 19 corresponds to the sequence
0110001100. Since the number of sequences of k zeros and 7 ones is

Phn) = Ct ;= %f—)!—, (1)

it follows that this is also the required number of routes.

The Arithmetical Square

Our traveler moves in the manner of a rook on a chessboard. Now consider an
infinite chessboard bounded by two mutually perpendicular rays pointing down
and to the right. Starting at the vertical edge of the board, we number the
columns 0, 1, 2,... . Starting at the horizontal edge of the board we number the
rows 0, 1, 2,... . The square at the intersection of the kth column and nth row
is assigned the coordinates (&, 7). In view of the outcome of the previous problem,
we see that if a rook located originally at the square (0, 0) moves only down and
to the right, then it can get to the square (k, z) in C . ways (the rook must make
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k moves to the right and #» moves down). If we write the number Cj_, in the
square (%, n), then we obtain the following table:

TABLE 3
1 1 1 1 1 1
1 2 3 4 5 6
1 3 6 10 15 21
1 4 10 20 35 56
1 5 15 35 70 126
1 6 21 56 126 252

This table is called the arithmetical square. Careful study of this table shows that
any number (greater than 1) in the arithmetical square is the sum of the number
above it and the number to the left of it. For example, 4 is above, and 6 is to the
leftof 10 = 4 1 6.

This rule follows readily from the equality C¥ = C* | + C*-] proved earlier
(see p. 35). However, we can also prove it directly using the following argument:
The rook can reach the square (%, n) from the square (¢ — 1, ) or from the
square (k, n — 1). By the rule of sum, it follows that the number of ways of
reaching the square (%, n) is equal to the sum of the number of ways of reaching
the square (k¢ — 1, #) and the number of ways of reaching the square (k, n — 1),
which is what we wished to prove.

The relation CE . = Cp_, shows that the arithmetical square is symmetric
with respect to the diagonal passing through the corner (this diagonal is referred
to in the sequel as the principal diagonal). To see this “geometrically,” observe
that the number of ways of reaching the intersection of the nth column and the
kth row is the same as the number of ways of reaching the intersection of the
kth column and the nth row.

Figurate Numbers

In the previous section we expressed each entry in Table 3 as a sum of an
entry in the preceding row and an entry in the preceding column. Each entry in
this table can also be expressed as the sum of entries in the preceding row alone.
In fact, the equality

C::Hc = C’}":+k—1 + C:;}c—z + o+ Cg—l

(Formula 15, p. 36) shows that every entry in our table is the sum of the entries
in the previous row beginning with the first and ending with the one above
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the entry in question. This shows how to compute the entries in our table row
by row.

This method of computing the entries in T'able 3 is connected with the study
of figurate numbers, which goes back to Pythagoras and Nicomachus. If we
represent the numbers 1, 2, 3,... as rows of one, two, three, and so on, dots, and
group the rows into triangles, then (see Fig. 20) the number of dots in each

Fic. 20

triangle is equal to the corresponding entry in the second* row of Table 3. This
explains why the numbers 1, 3, 6, 10, 15, 21,..., are called triangular numbers.
The kth triangular number is

C2 _ (k+l)k .

k+1 — 2

The triangles in Fig. 20 can be stacked into pyramids. The number of points
in each pyramid is equal to the corresponding number in the third row of
Table 3. This explains why the numbers 1, 4, 10, 20, 35,..., are called pyramidal
numbers. The kth pyramidal number is

s _ (R+2)k+ Dk
Ck+2_ 1_2_3 .

In order to continue with this interpretation of the numbers in Table 3, it is
necessary to consider pyramids in spaces of more than three dimensions.

The study of figurate numbers attracted the attention of mathematicians for
centuries and was at one time an important part of the theory of numbers.

Arithmetical Triangle

Now we consider a chessboard in the form of a half plane and place a checker
in square A4 of the zeroth row (Fig. 21). Moving in accordance with the rules of

* We remind the reader that the rows in Table 3 are numbered 0, 1, 2,... .
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the game (that is, the game of checkers) the checker can reach each of the
(shaded) squares in the region bounded by the lines 4B and AC (Fig. 21). If
we write in each square the number of paths by which the square in question can
be reached by the checker, then we see that, except for position, these numbers
are the same as the numbers in the arithmetical square. And small wonder:
If we rotate the board through 45°, then our checker moves along vertical and
horizontal lines, that is, in the manner of a rook. It is customary to represent the
numbers in Fig. 21 in the form of a triangle (T'able 4). Then every number

TABLE 4

(greater than 1) is the sum of the two numbers which are in the row above this
number and to either side of it. This triangle is frequently called the Pascal
triangle. However, Tartaglia* (1500-1557), who preceded Pascal (1623-1662),
was familiar with it. Also, long before Tartaglia, this triangle turned up in the
works of the Arab mathematicians Nasir Eddin and Omar Khayyam. In view
of these facts, it is perhaps best to call this triangle the arithmetical triangle.

* Tartaglia was a remarkable mathematician. In addition to discovering the arithmetical
triangle, he also discovered the formula for the solution of cubic equations. Tartaglia
told the formula to another Italian mathematician, D. Cardano, who swore to keep it
secret but promptly published it in his textbook of algebra with the result that the for-
mula for the solution of cubic equations is called ““Cardano’s formula.”
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The arithmetical triangle can be written in the following form:

TABLE 5
1 0 0 0 0 O
1 1. 0 0 0 O
1 2 1 0 0 O
1 3 3 1 0 O
1 4 6 4 1 0
1 5 10 10 5 1

Here at the intersection of the Ath column and the nth row we have the number
C* (we remind the reader that the number of the top row and of the leftmost
column is zero). Each number in Table 5 (not in the top row or leftmost column)
is the sum of the number directly above it and the number directly above and
to the left of it. For example, in the case of the number 4 in the fourth row the
number directly above it is | and the number directly above and to the left of it
is 3, and 4 = 1 4 3. We note that all the entries in Table 5 above the principal
diagonal are zeros, and all the entries in the zero column are ones. Also, the entries
in the nth row, that is, the numbers CF for fixed n, are the coefficients in the
expansion of (1 + x)* in powers of x. Since 1 4 «x is a binomial, the numbers
CF for fixed n are called binomial coefficients. We will come back to this issue in
Chap. VII.

The Extended Arithmetical Triangle

The arithmetical triangle takes up only part of the plane. We now extend it
to the whole plane in such a way that, just as before, every element is equal to the
sum of the element directly above it and the element directly above and to the left
of it. Also, since the zeroth column in the arithmetical triangle consists of ones,
it is natural to fill the zeroth column in the extended arithmetical triangle with
ones.

Application of our “rule of formation” to the zeroth column shows that the
column directly to the left of it must consist of zeros. But then all the columns
to the left of the zeroth column must consist of zeros. Now consider the rows
above the zeroth row. The first element of the zeroth row is 0. Since the number
directly above and to the left of it is 1, we must write directly above it the number
—1 (1 + (—1) = 0). But then to get 0 in the second position in the zeroth row,
we must write 1 directly above it. Continuing in this way, we see that the row
directly above the zeroth row consists of an alternating sequence of 1’'s and —1’s.
By now it is clear how to fill each successive new row.
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The result of our extension work is the following table:

TABLE 6
0 1 —5 15 —35 70 —126
0 1 —4 10 —20 35 —56
0 1 -3 6 —I10 15 —21
0 1 —2 3 —4 5 —6
0 1 —1 1 —1 1 —1

coococoo

A look at the (nonzero) part of our table above the zeroth row shows that,
apart from sign, its elements coincide with the appropriate elements of the
arithmetical square on p. 92. Specifically, the element of the extended arith-
metical triangle at the intersection of the kth column and (—#)th row is
(— 1) CE,,_, . That this is true for all values of k and —n follows from the
equality

(=D Chyet + (=D Criers = (— D) [Chyzs — Gtk = (—1)*Chisms

(see Formula (11) on p. 35). This equality shows that in the table composed of
the numbers (—1)*C¥_,_, , the kth element of the (—# + 1)th row is the sum
of the elements of the (—n)th row occupying the positions 2 and & — 1. This
means that the law of formation of the table composed of the numbers
(—1)*CE, ., is the same as the law of formation of the extended arithmetical
triangle. Moreover both tables have the same zeroth column and (—1)th row.
It follows that the two tables coincide.

In the original arithmetical triangle (T'able 5), the number at the intersection of
the kth column and nth row is C¥. In the extended arithmetical triangle, the
number at the intersection of the th column and (—n)th row is (—1)*C¥, . , .
This suggests that we define the symbol CF for negative subscripts by means of
the equation

CL, = (—1)*Cryps - (2)

Table 6 shows that the extension of C¥ to negative values of & is trivial: C* = 0
for & <C 0 (see also p. 158). Furthermore, C¥ = 0 for 0 < n < k.
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Chess King

Consider a chess king placed in the upper left-hand corner of an infinite chess-
hoard and allowed to move (one square at a time) either forward or forward and
to the right. If we write in each square the number of ways in which this
“one-sided chess king”' can reach the square in question, then we obtain the
arithmetical triangle.

Now we replace the “one-sided king’’ with the usual chess king but keep the
restriction that the king must invariably move forward, that is to the next new
row. To enable the king to take advantage of his new possibilities, we place him
on a board bounded by a single straight line. Figure 22 shows a board of this
type. The numbers in the squares indicate in how many ways the king can reach
the square in question if he starts from the square marked with a crown.
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To see how this table is put together, we assume that we know in how many
ways the royal wanderer can reach each of the squares in the (= — 1)th row and
try to compute the number of ways in which he can reach various squares in the
nth row. It is clear that the king can reach a square in the nth row from the
square directly below it, from the square directly below and to the left of it, and
from the square directly below and to the right of it (see Fig. 22). By the rule
of sum it follows that:

The number of ways in which the chess king can reach a square in the nth row s
equal to the sum of the number of ways in which he can reach the three nearest
squares in the (n — 1)th row; here we assume that the chess king can reach the
initial square in just one way (by just staying put) and that he cannot reach the
remaining squares in the zeroth row.

The Generalized Arithmetical Triangle

If we move the numbers in the triangle in Fig. 22 to the left so that the left
diagonal of 1’s assumes a vertical position, and flip the resulting table about the
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horizontal boundary line, then we obtain Table 7 (apart from the two columns of
zeros on the left). The law of formation for this table can be stated as follows:

Each number is the sum of three numbers in the preceding row, namely, the number
directly above it and its two immediate neighbors to the left.

For example, the number 16 in the fourth row is the sum of the numbers 3, 6,
and 7 in the third row.

It is clear how to generalize the arithmetical triangle. In place of the number 3,
we take any natural number m. We fill the zeroth row with a one followed by
zeros. In filling the first row we require that any number in that row be the sum
of m numbers in the zeroth row, namely, the number just above it and the
m — | immediate left neighbors of that number (with zeros making up any

TABLE 7
0 o0 1 0 0 0 0 0 0 0 O
0 o 1 1.1 0 O 0 O O o
0 o0 1 2 3 2 1 0 0 O O
0 0 1 3 6 7 6 3 1 0 0
0 o0 1 4 10 16 19 16 10 4 1

shortage). The remaining rows are filled in an analogous manner. The result
is a table in which each number is the sum of m numbers in the preceding row,
namely, the number directly above it and the immediate m — | left neighbors
of that number. For m = 2, we obtain the arithmetical triangle, and for m = 3,
we obtain T'able 7.

To distinguish between the arithmetical triangles coresponding to different
values of m, we speak of m-arithmetical triangles. We denote the number in an
m-arithmetical triangle located at the intersection of the kth column and #nth row
by C,.(k, n). The definition of an m-arithmetical triangle implies that the numbers
C,.(k, n) satisfy the relation

Cullon) =Cyp(Ron-1)+ Cplk-1,n-1)4 -+ Cplk-m+ 1,n-1). (3)
Also, the following relations hold:

1, if 0<<k<<m—1,

Cm(ka 1) = 0, if &> m

Generalized Arithmetical Triangles and Numbers to the Base m

There is a connection between the numbers C,(k, #) and numbers to the base m.
Specifically, there are C,(k, n) n-digit numbers to the base m with digit sum k. (In counting
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n-digit numbers we must include numbers consisting of n digits and starting with one
or more zeros; for example, 001,215 is to be regarded as a 6-digit number with digit
sum 9.)

We denote by B, (k, n) the number of #-digit numbers to the base m with digit sum k
and prove that the numbers B, (%, n) satisfy the same relation which is satisfied by the
numbers C,(k, n), namely relation (3). The last digit of a number to the base m is one
of the digits 0, 1,..., m — 1. It follows that the possible values of the digit sum of an
(n — 1)-digit number obtained by erasing the last digit of an n-digit number are
k,k—1,.., k—m + 1. But then, in view of the rule of sum, we have

Bo(k,n) = Bu(k,n—1) + *+ + Bu(k—m + 1, n— 1). (4)

Also, it is clear that B,(k, 1)is 1if 0 < & < m — 1 and 0 otherwise (if 0 < &k < m—1,
then there is just one 1-digit number to the base m with digit sum &, and for & > m there
are no 1-digit numbers to the base m with digit sum k). This means that the top row of
the table of the B, (k, n) coincides with the top row of the table of the C,(k, n). Also, the
law of formation (3) governing the C,(k, ) is the same as the law of formation (4)
governing the B(k, n). It follows that B,.(k, n) = C,(k, n) for all &k and ».

Some Properties of the Numbers C, (k, n)

We shall now state and prove a few properties of the numbers C,(k, #). Some of
these properties reflect certain properties of the numbers C} , and some establish a direct
connection between these two classes of numbers. The existence of such connections is
not surprising if we remember that the structure of the arithmetical triangle implies the
relation Cy(k, n) = Cj.

The numbers C,,(k, n) are different from zero only if 0 < k2 < n(m — 1); this follows
from the fact that each row of nonzero entries in an m-arithmetical triangle contains
m — 1 more entries than its predecessor.

The numbers Cp(k, #7) have the following symmetry property:

Cplk,n) = Cp(n(m — 1) — k, n). (5)

To prove (5), we associate with each n-digit number to the base m its ‘“complement”
obtained by replacing each digit in the original number with the difference between
m — 1 and the digit in question; for example, if m = 7, then the complement of 3,140,216
is 3,526,450. It is clear that if the digit sum of the original number is k, then the digit
sum of the complement is #(m — 1) — k. It follows that there are as many »n-digit nurmbers
with digit sum k as there are n-digit numbers with digit sum n(m — 1) — k&, which is
what is claimed in (5).
Since there are m™ n-digit numbers to the base m (see p. 3), it follows that

Cn(0, 7) + Cp(1, n) + - + Cu(n(m — 1), n) = m". (6)
Now we prove that

Cn(0, 1) Cu(ry n—1) + Co(1,1) Cuh— 1, n—1) + ++ + Cp(ky 1) Cu(0, n—1) = Cpnlk, ),
(7)

where 0 << I < n. We separate all n-digit numbers with digit sum % into classes. The
numbers in the sth class are the numbers for which the sum of the first / digits is 5. The
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sum of the last n — [ digits of a number in the sth class is X — 5. By the rule of product,
the sth class contains Cp(s, I) Cp(k — s, n — I) numbers. Since there are C,,(k, n) n-digit
numbers with digit sum £, relation (7) follows.

For I = 1, relation (7) reduces to relation (3); this is so because C,(k, 1) = 1 for
0<k<m—1and Culk, 1) =0fork > m.

Finally we prove the relation

CoCus(k—n,n) + CrCpyk—n +1,2—1) +

0 CaCpa(k—n £ s, — ) + = + ClCny(k, 0) = Cu(k, ). (8)

We separate all n-digit numbers to the base m with digit sum k into classes. We put in
the sth class, 0 < s < n, all numbers with exactly s zeros.

Now we compute the number of elements in the sth class. Each number in this class
can be selected in two stages. First we select the positions of the s zeros. Since each number
has » digits, this can be done in C2 ways. Then we ignore the s zeros in each of our num-
bers and decrease each of the remaining digits by 1. We end up with an (7 — s)-digit
number with digits belonging to the sequence 0, 1,..., m — 2, and digitsum k — (n — s) =
k —n + 5. This class of numbers coincides with the class of (# — s)-digit numbers to the
base m — | and digit sum 2— »n + s. There are C,,_;(k— n 4 s, n — 5) such numbers.
By the rule of product, we see that there are C, C,,_3(k — 7 + s, 7 — 5) numbers in the
sth class. Since there are C,(k, #) n-digit numbers to the base m with digit sum &, the
rule of sum implies the validity of (8).

Starting with the relation Cy(k, #) = C} and making repeated use of (8), we can express
Cp(k, n) in terms of the binomial coefficients. For example, using (8) once, we obtain the
relation

Calky 1) = CoCrn + CaCrnss + =+ + CnCr.

Checker in a Corner

We place a checker in the corner of an infinite checkerboard bounded by two
mutually perpendicular rays (Fig. 23).* In each square we write the number of
ways in which the checker can reach the square in question. The result is different
from that obtained on p. 94, where the board was bounded by a single line.
The difference is due to the fact that now the checker cannot cross the vertical
boundary. In general, the existence of the vertical boundary reduces the number
of ways in which the checker can reach a particular square. For example, in the
present case each square adjoining what is now the vertical boundary line can
be reached from only one neighboring square, whereas in the case discussed on
p. 94 each of these squares could be reached from two neighboring squares.
In the case discussed on p. 94, we saw that the number appearing in a black
square was the sum of the two numbers appearing in the neighboring black

* The extra column on the left of the board in Fig. 23 is used in the sequel.
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squares in the row just below the black square in question. For this rule to hold
in the present case, we must add a column to the left of the vertical boundary
and write a zero in each of its black squares (this agrees with the fact that the
extra squares cannot be reached by our checker).

We wish to compute the number of ways in which the checker can reach a
particular square in Fig. 23. Let a zero denote a move to the left and a one a move
to the right. Then each path is denoted by a sequence of zeros and ones. Also, the
number of zeros and ones in a sequence is uniquely determined by the terminal
square of the path associated with the sequence. For example, any path with
4 zeros and 6 ones leads to the square at the intersection of the second column
and tenth row (when numbering the rows and columns we start, as before, with
the number 0).

It is clear that only certain sequences of zeros and ones are admissible as
descriptions of paths which can be reached by our checker. For example, no
sequence can begin with a zero, since this would immediately force the checker off
the board. The admissible sequences can be characterized as sequences in which
the number of ones preceding any entry is at least as large as the number of zeros
preceding this entry. Another way of saying the same thing is that at any move
of a given path the number of moves to the right preceding this move is at least
as large as the number of moves to the left preceding this move; violation of this
condition would force our checker off the board.

We see that our problem reduces to the problem of computing the number of
sequences of & zeros and m ones satisfying the following condition: the number of
ones preceding any entry is at least as large as the number of zeros preceding
this entry. This problem was solved on p. 59 (there in place of zeros and ones
we used the letters d and %), where it was found that the number of admissible
sequences was [(m — k + 1)/(m + 1)]CE ., . This then is the number which
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belongs in the square at the intersection of the (m — k)th column and (m + &)th
row.

Rather than place our checker in the corner we now place it in the gth square
of the zeroth row (contrary to the rules of the game this may turn out to be a
white square). This provides the checker with a margin of ¢ moves to the left.
This case corresponds to the problem considered on p. 60 where, at the
beginning of the sale of tickets, the cashier had a supply of ¢ half-dollar coins.
The solution of the latter problem tells us that, if our checker reaches a certain
square after k£ moves to the left and m moves to the right, 0 < £ <C m + ¢, then
the number of ways of reaching this square is CF,, — C¥-%9".* Figure 24
shows the table corresponding to the case ¢ = 3.
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The Arithmetical Pentagon

If we rotate the board in Fig. 23 through a 45° angle, then the checker moves
along vertical and horizontal lines, and the boundary forms a 45° angle with these
lines. This shows that the problem of the checker is equivalent to the following
problem:

A rook is placed at the corner of a chessboard. In how many ways can the rook
reach the square (k, m) if it moves along the shortest possible paths and does not
cross the diagonal of the board (but is allowed to reach it) ?

Let the rook be initially in the upper left-hand corner of the board. If
(k, m) denotes the square at the intersection of the kth column and mth row
(k,m =10, 1, 2,...), then the results of the previous section show that, for
k < m, the required number of ways is [(m — &k + 1)/(m + 1)]CE, ., and, for

* This number belongs in the square at the intersection of the (m — k& + ¢)th column
and (m + k)th row (Translators).
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k > m, this number 1s zero. If the diagonal is moved ¢ squares to the right,
then for 0 <{ & < m + ¢ the required number of ways is Cf,, — CE-%*, and

for k > m + ¢ it is zero.
With the diagonal moved to the right and the board finite, the nonzero

numbers in the corresponding table fill a pentagon (Fig. 25). This pentagon is
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called an arithmetical pentagon. By abuse of language, this name is also applied
to the table associated with an infinite chess board bounded by two mutually
perpendicular rays.

The basic property of an arithmetical pentagon is the same as the basic
property of the arithmetical square (‘T'able 3, p. 92). In both cases an element is
the sum of the element directly above it and the element directly to the left of it.
The difference between the two tables consists in the fact that the diagonals of
the arithmetical pentagon above the bounding diagonal consist of zeros (in this
respect the arithmetical pentagon resembles the arithmetical triangle, Table 5,
p- 95).

Now we take a board bounded by two mutually perpendicular rays and
introduce as extra boundaries two diagonals, one located ¢ lines above the
principal diagonal and the other located s lines below the principal diagonal.
Then we write in each square the number of ways in which a rook located at the
corner can reach the square in question. The resulting table is called an
arithmetical hexagon. Figure 26 shows an arithmetical hexagon for which
g=4,s =3.
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The arithmetical hexagon can also be thought of as arising in the following
way: consider a chessboard bounded by a segment ¢ + s 4 1 squares long and
by two rays perpendicular to the segment. A checker is placed ¢ squares away
from one corner and s squares away from the other corner. In each square reached
by the checker we write the number of ways in which the checker can reach it.
Rotation of this table through a 45° angle yields the arithmetical hexagon.

Geometric Proofs of Properties of Combinations

In Chap. IT we proved certain properties of combinations. We now show how
to prove these properties in a more intuitive way by using geometric arguments.
First we give a geometric proof of the relation

Co+Co+CE 4 - Cp=2" 9

To this end, we consider all paths leading from the point A(0, 0) to the points
By(k,n — k), 0 < k < n (Fig. 27).

B,(0,5)

®
A{0,0)
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For each k, 0 < k& <{ n, the number of paths with end point B, is C¥ . Now
we compute the number of all paths. Each path consists of # horizontal and
vertical segments. If we mark each horizontal segment of a path with a zero and
each vertical segment of that path with a one, we obtain a description of the path
in terms of a sequence of 7 zeros and ones. Also, each n-sequence of zeros and
ones determines just one of our paths. Since the number of n-sequences of
zeros and ones is 27, relation (9) holds.

On p. 92 we gave geometric proofs of the relations

Ct=Ck,+Ck,  and Ct=Cr*
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It is possible to give geometric proofs of more complex relations. Consider
a vertical line with abscissa m, 0 << m < k (Fig. 28). Each path from A4(0, 0)
to B(k, ) has a point or a segment in common with this line. We separate the
paths from A4 to B into classes and put into the sth class all paths for which the
point Dy(m, s) is the last point which they share with the line x = m.

Now we compute the number of paths joining A to B which belong to the
sth class. A path in this class consists of a path from 4 to D,, the segment
joining Dy(m, s) to Dy(m + 1, s) (D, is the last point of the line ¥ = m which
belongs to our path!), and a path from D}(m + 1, s) to B(k, n). By Formula (1),
there are P(m, s) paths from A(0, 0) to Dy(m, s). Similarly, there are P(k — m — 1,
n — s) paths from D(m + 1, 5) to B(k, n) (to get from D, to Bwegok — m — 1
units to the right and # — s units up). By the rule of product, the number of
paths in the sth class is

P(m,s)P(k —m — 1,n — ).

The number of paths from 4 to B is P(n, k). By the rule of sum, we obtain the
equality

Pk, n) = P(m,0)P(k — m — |, n)
+ P(m, )P(k —m — 1, n — 1) 4 -+ 4+ P(m,n)P(k — m — 1, 0).

B(k,n)

A(0,0)
Fic. 28

This equality can be written as
Cove = CRCaiitms + ConCaiitms + - + CoiaCiisy (10)

(see Formula (24"), p. 38).
In particular, for m = & — 1, we obtain the relation

Clry=Col 4+ CE o - CHE - CEL L (11)
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We note that (10) and (11) can be obtained by repeated application of the
relation C¥ = C¥_, + Ck1.
We leave it to the reader to give a geometric proof of relation (23) on p. 37

which we state in the following convenient form:

Z:+Ic = :+k—scg + C;:;i—sc.: + -+ CZIIT-S :n + o+ C:;Ji-scf )
where 0 <<s <<k O0<<s<<n (12)

Hint: Draw the line through the points D(k — s, n) and E(k, n — 5) and separate
the paths from A4 to B into classes of paths which go through the same point of
that line.

By separating the paths from 4(0, 0) to B(%, #) in different ways, it is possible
to prove geometrically many more relations involving the numbers C, , .

Using multidimensional geometry, it is possible to give analogous proofs of
relations involving the numbers P(n, ,..., 7,) (see (27) and (28) on p. 39).
However, this exceeds the scope of our book.

It is also possible to give geometric proofs of the relations in the last section of
Chap. III involving the numbers CZ . To this end, we consider the paths on a
chessboard which do not cross a specified line parallel to the principal diagonal
(but which may nevertheless have points in common with that line). Appropriate
ways of separating these paths into classes lead to the required results.

The problem of queues in front of the ticket office also admits of a very simple
geometric interpretation. If we associate with each half-dollar coin a horizontal
(unit) segment and with each dollar bill a vertical segment, then the queues which
file past the ticket office without a hitch are represented by paths which do not
cross the principal diagonal. The transformations involved in our discussion of
this problem can also be interpreted geometrically; placing a man with a half-
dollar coin at the head of the queue and changing half-dollar coins to dollar
bills and dollar bills to half-dollar coins in a part of the queue amounts to adding
a horizontal segment at the beginning of the path corresponding to the queue
and reflecting a part of the path in a diagonal parallel to and closest to the
principal diagonal. We leave it to the reader to translate the arguments used in
the solution of this problem into geometric language.

Random Walk

There is a close connection between the above problems dealing with motions
of chess pieces and random walk problems which are of importance in physics.
We consider the following problem (given in 1945 to participants in the VIII
Moscow Mathematical Olympiad).
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Consider the network of paths in Fig. 29. 2N people depart from the point A.
Half of the people go in the direction | and the other half go in the direction m. When
either group reaches the first intersection half of its members go in the direction I and

Bo(O,N)
BK('K,N-K)
m
A : Bn(N,O)
L
Fic. 29

the other half in the direction m. This process is repeated whenever a group reaches an
intersection. Each person walks N segments. We wish to find the intersections
reached by members of the original group and to determine the number of people
who reach each of these intersections.

Since each person walks N segments, it follows that each person arrives
at one of the points B, with coordinates (¢, N — k), where & takes on the values
0, 1,..., N. All of these points are located on the line joining the points By(0, N)
and By(N, 0) (Fig. 29).

It remains to find out how many people arrive at the point B,(k, N — k).
We code each path from A(0, 0) to By(k, N — k), Ak = 0, 1,..., N, by means of a
sequence of zeros and ones. The result is the set of all N-sequences of zeros and
ones. We know that there are 2¥ such sequences. Since the number of people
who departed from A was also 2V, it follows that each path was traversed by
exactly one person. But this means that the number of people who arrived at
Bi(k, N — k) is the same as the number of shortest paths joining 4 to
B(k, N — k). The number of such paths was computed in the beginning of this
chapter and is equal to

N!

—_ e k —_
Pk, N — k)= Cy ROV =R
To sum up: CE = NI/[k! (N — k)!] people arrived at B,(k, N — k). This
number is the k&th number of the Nth row in the arithmetical triangle.
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Brownian Motion

The problem just solved is essentially equivalent to the following problem:

2N people depart from the origin 0 of a coordinatized line. Half of them go to the
right and half go to the left. Such division takes places every hour. Find the number
of people who arrive at various points after N hours.

We assume that in one hour each person walks % unit of length. Reasoning as
before, we find that after N hours C¥ = N[kl (N — k)!] of the walkers will
arrive at By(k — N/2), k =0, 1,..., N.

It is not likely that groups of people walk in the manner just described (by the
way, in the folk version of our problem there is a pub at 0). However, in some
physical problems this type of rambling arises in a natural way. Specifically,
such rambling is the simplest model of what is known as Brownian motion of
particles, which is the result of particles colliding with molecules.

Consider particles which are restricted to motion on a line. Since collisions
with molecules are of a random kind, we can assume as a first approximation
that in a unit of time, half of the particles move { unit of length to the right and
half move } unit of length to the left (in reality the process is far more complicated
and other displacements are possible). Therefore, if there are initially 2V particles
at 0, then they move roughly like the crowd in the preceding problem. Physicists
apply the term diffusion to this type of dispersion of particles. In view of our
solution of the random walk problem, we can say that after IV units of time the
number of particles at the point Bi(k — N/2)is C¥, = N!/[k! (N — k)!].

As noted before, the numbers C% are the elements of the Nth row of the
arithmetical triangle. If the nature of the diffusion process is different, then we
obtain instead the elements of the Nth row of the m-arithmetical triangle.
Specifically, let the initial number of particles at the origin 0 of a coordinatized
line be m". Instead of dividing the set of particles into halves, we divide them into
m equal parts and place them on the line symmetrically with respect to 0, so
that neighboring parts of the set are a unit of length apart. Then each of the
m parts undergoes an analogous process of division (except that the center
of symmetry is no longer 0 but the point at which the part in question is located).
After N steps, the particles are at the points B;, with coordinates & — (m — 1)N/2,
k=0, 1,..., (m — 1)N, and the number of particles at By is C,(N, k).

For large values of N, it is rather difficult to compute the number of particles at each
point. But, as often happens in mathematics, the more complex the law governing the
distribution, the closer it gets to a simple limiting law. The larger the number of particles,
and hence the greater the complexity of the precise law governing their distribution, the
more accurate the description of the distribution furnished by the limiting law.
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It is proved in the theory of probability that if N is large and a is small relative to N,
then the segment [x — a/2, x + a/2] contains approximately

12am™ [ 722 ] *
exp | ———8M8M8MM8M

V2r Nm:— 1) N2(m? — 1)2
particles. This statement is to be interpreted as follows: Consider the graph of a step
function whose ordinate at the point B,(k — (m — 1)N/2) is C,(N, k). If we divide the
abscissas of the points on the graph by the factor N(m? — 1)/12 and the ordinates by the

factor 12am™ [N (m? — 1)], then for large N we obtain the graph of a step function which
1s very close to the graph of the function

1

y=—= e,
vV 2n

The latter function was introduced into the theory of probability by the great German
mathematician K. Gauss and is known as the Gauss function. This function plays an
important role not only in problems of gas diffusion but also in the theory of heat con-
duction, in error theory, and so on.

In the Realm of the Tsarina of Shemakhan

We return to the crowd wandering on the directed line with origin at 0, except
that now we assume that to the left of O there extends ... the realm of the tsarina
of Shemakhan who played such a deplorable role in the affairs of the unlucky
tsar Dodon and his sons.** The reader will undoubtedly remember that those
who entered the tsarina’s realm were never heard from again. We, too, assume
that anyone who gets to the left of 0 stays there. Our problem is to determine the
whereabouts of the people in the crowd N hours after the crowd left the
point 0. Specifically, we wish to know how many people ended up in the realm
of the tsarina of Shemakhan and how many people reached various other
locations.

It turns out that this problem reduces to the problem of the queue in front of
the box office. Indeed, consider a person leaving 0. This person moves } unit
of length per hour. If within the following N hours he does not end up in the
realm of the tsarina of Shemakhan, then having made %2 moves to the right,
he gets to the point B,k — N/2). If we associate with a move to the right
a person with a half-dollar coin and with a move to the left a person with a
dollar bill, then we see that a walk which lands the walker in the realm of the
tsarina of Shemakhan corresponds to a “bad” queue at the box office (that is a

* exp x stands for ¢*,
** The reference is to a Russian folktale (Translators).
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queue which is troubled by a lack of change), and that a walk which ends at
B,(k — N/2) corresponds to a “good’ queue at the box office in which % people
have half-dollar coins and N — % people have dollar bills. For a queue to be
good it is necessary that & > N — k. The number of good queues is (see p. 59)

P w1 NIQE—N41)
AN — k) = Gy — Cy BTE S CES

If follows that of the 2¥ people leaving the point 0, C¥~* — C¥*! people
arrive at the point By(k — N/2) for which 2k > N.

To compute the number of people who end up in the realm of the tsarina of
Shemakhan, we note that the number of lucky walkers is equal to the sum of all
numbers of the form C¥~* — C¥~*! for integral k in the interval N/2 < k <{ N.
Denote by E(x) the integral part of x. Then %k takes on the values
k = E[(N + 1)/2],..., N, and the sum in question is

[C%—E[(N+1)/2] _ C%—E[(N+1)/2]—1] e [Cz.ir . C;,l] — CIJ:.TT—E[(N+1)/2]'

Since the number of walkers is 27, it follows that the number of people who end
up in the realm of the tsarina of Shemakhan is 2¥ — CN-E[(NV+1/2]

If the realm of Shemakhan stretched to the left of the point 0, with abscissa
—g/2, then, in view of the solution of the problem on p. 60, CY¥—* — C¥-*-1-1
people would arrive at all the points B, , N — ¢/2 < & <{ N, and the remainder
would end up in the realm of Shemakhan,

An Absorbing Wall

We already mentioned the fact that random walk problems are of great
importance in physics because they yield the simplest models of diffusion of
particles. In particular, the two cases of the problem about the tsarina of
Shemakhan and her realm correspond to the physical problem of diffusion of
particles on a line in the presence of an absorbing wall located at 0 or ¢/2 units
away from 0.

At the time when the only applications of combinatorics and probability were
to games of chance, the random walk problem with absorption was stated in
terms of ““games to the bitter end’’: T'ake two people playing, for example, the
game of heads or tails. After each toss the loser pays the winner a dollar and the
player who first becomes penniless quits the game. The mathematical problem
was to compute the probabilities of various outcomes of the game if the players
had initially p and ¢ dollars, respectively. It is clear that this problem is related
to the problem of diffusion of particles in a region bounded on two sides by
absorbing walls.
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Roaming on an Infinite Plane

So far we have considered motions of a rook where the rook was allowed to
move forward or to the right only. We saw that this was equivalent to the
consideration of what could be called roaming on an infinite line. Now we
consider unrestricted motions of a rook on an infinite board. In other words, we
propose to solve the following problem:

A rook is initially located at the square (0, 0) of a chessboard supposed infinite
in all directions. In how many ways can the rook reach the square A(p, q) in N
moves (we assume that the rook moves a square at a time) ?

By symmetry, it suffices to consider the case p = 0, ¢ = 0. Since each of the
shortest paths from 0(0, 0) to A(p, q) involves p + ¢ moves, we must have
N = p + ¢. An N-move path differs from a shortest path by the existence of
pairs of moves which cancel each other. Hence N — p — ¢ must be an even
number. We put N — p — ¢ = 2k.

Suppose the rook made s moves to the left. Then it must have made p + s
moves to the right. This leaves N — p — 25 = g + 2(k — 5) vertical moves.
Of these, £k — s moves are “‘down’” and ¢ + & — s moves are “up.” Hence
0 <s<k

For every value of s satisfying this inequality, we obtain a number of paths
consisting of s moves to the left, p -+ s moves to the right, # — s moves down,
and g¢ + # — s moves up. These moves can be performed in any order. This
implies that the number of paths determined by the various ways of combining
the moves is P(s, p + s, & — 5, ¢ + k& — 5). But then the totality 7" of N-move
paths joining 0(0, 0) to A(p, q) is

k k

(2 + g+ 2R)!
T: P! )k_, k— e ]
sgo (5,0 + s 5, ¢ + 5) Eos!(p—i—s)!(k—s)!(g—i-k—s)!

To obtain a more convenient form for this expression, we note that

ovtE (p + g + 25 CF=s — (2 + At
T (p+ R g+ R PET k=9l (p+ )
cs @+ A!
WET sl g+ R—9)

and so
. k
— P+ =5 s
T = Cp+q+2k CZJ+kCQ+k .
§=0

The sum on the right-hand side consists of products of the form CC™, with

n
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fixed lower indices, and upper indices with index sum k. Applying Formula (23)
on p. 37, we obtain for T the expression

T= C£I§+2kcg+q+2k ’
or, since p + g + 2k = N,

T = CI*Ck .

The General Rook Problem

Now we study a different class of combinatorial problems on a chessboard.
A basic component of these problems is the computation of the number of ways
of placing two pieces on a chessboard so that they can attack each other (or, the
analogous computation of the number of ways of placing the two pieces so that
they can not attack each other).

We discussed one such problem on p. 20, where we computed the number of
ways of placing 8 rooks on an ordinary chessboard so that no two could attack
one another. We now solve the more general problem of computing the number
of ways of placing & rooks on an m X 7 chessboard (a chessboard with m rows
and 7 columns) so that no two rooks can attack one another.

It is clear that if & > m or k > n, then there will be two rooks in one row or
in one column and the problem will have no solution. Suppose now that & < m
and & < n. We place our rooks in two stages. First we choose & of the m rows
to be occupied by the k rooks. This can be done in CX ways. Then we choose
k of the n rows to be occupied by the & rooks. This can be done in CF ways.
Since the choice of columns is independent of the choice of rows, it follows,
by the rule of product, that the & rows and % columns occupied by the rooks can
be selected in CXCF ways. Observe that for each selection of & rows and %
columns we have k2 squares in which the rows and columns intersect. Qur %
rooks are to be placed on % of these k2 squares so that no two rooks can attack each
other. Since the k2 squares can be thought of as forming a £ X k chessboard, we
conclude (see p. 20) that this step can be carried out in ! ways.

All in all, our problem admits

n! m!

k ~lpy —
CmCak! kl(n— k) (m — R)!

(13)

solutions.
For example, 3 rooks can be placed in the required manner on an ordinary
chessboard in
8! 8!

35T — 17,69
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ways. Again, 7 rooks can be placed in the required manner on an # X 7 board in
n! ways (see p. 20).

If we remove the restriction that no two rooks can attack each other, then our
problem reduces to the problem of selecting 2 out of mn squares. This can be
done in

(mmn)!
Rl (mn — k)l

k
Cmn =

ways. If the k rooks are different from each other, then the above answers must
be multiplied by £!.

Symmetric Arrangements

We now complicate our rook problem by adding a symmetry requirement to
the requirement that the rooks cannot attack one another.

The simplest requirement of this type is the requirement that the rooks are
to be placed symmetrically about the origin. We denote by G, the number of
solutions of this problem when the number of rooks is # and the board is n X 7.
We claim that

Gy, = 21Gyy,_, . (14)

Consider a board with 2z rows and 2z columns. If a rook in the first column
occupies the jth square, then there must be a rook in the last column occupying
the (2n — j + 1)th square. Sincej 7= 2n — j + 1, the rook can occupy any of the
2n squares in the first column without sharing a row with the rook in the last
column. Now we delete the first and last columns as well as the rows occupied
by the two rooks. The result is a board with 27 — 2 rows and 27 — 2 columns.
It is clear that each symmetric arrangement on the new board determines 2n
symmetric arrangements on the original board. But then G,, = 21G,,_,, as
asserted.

Repeated use of (14) shows that G,, = 2n!.

Now consider the case of a board with 2n 4+ 1 rows and 27 4 1 columns.
In this case the central square of the board is symmetric with respect to the center
of the board and must carry a rook. If we delete the central row and column, then
we end up with 2z rooks arranged symmetrically on a 2n X 2n board. This
means that

Geny1r = Gpp = 2™l (15)

Next we consider a somewhat more difficult problem involving arrangements
which are invariant under a 90° rotation (Fig. 30 illustrates such an arrangement
on an 8 X 8 board). Take the case of 4n rooks placed on a 4n X 4n board. In
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this case the rook in the first column can occupy 47 — 2 of the 4z squares in this
column (if the rook occupied a corner square then, in view of the requirement of
rotational symmetry, the remaining corner square in this column would also be
occupied by a rook and the two rooks could attack one another). Rotations
through 90°, 180°, and 270° associate with this rook three more rooks located,
respectively, in the last row, the last column, and the first row. Deletion of these
four border rows and columns yields a (42 — 4) x (4n — 4) board whose rooks
satisfy the requirements of our problem. This means that for each admissible
arrangement of the rooks on the smaller board there are 4n — 2 admissible
arrangements of the rooks on the original board. If R, denotes the number of
solutions of our problem for an # X 7 board, then we conclude that

Ry = (411 - 2)R4n—4 .
Repeated use of this relation shows that

R,, = 2"(2n— 1)2n — 3) - 1. (16)

Now consider the case of a (4n + 1) X (4n 4 1) board. In this case our
rotations carry the central square into itself and so this square must be occupied
by a rook. Deletion of the central row and column leaves a 4n X 4n board. It
follows that

R4n+1 = R4n . (17)

In the remaining cases of a (4n 4 2) X (4n 4 2) and a (4n 4 3) X (4n + 3)
board there are no solutions. To see this, note that if a solution exists, then a
rook not in the center of the board is one of four rooks which are permuted
among themselves by 90° rotations of the board. It follows that the number of
rooks is of the form 4z (when there is no rook at the center) or 4n + 1 (when
there is a rook at the center). This shows that R,,,,, = Ry,,; = 0, as asserted.

Finally we compute the number of arrangements of # rooks symmetric with
respect to a diagonal. For definiteness, we choose the diagonal through the lower
left corner of the board. We denote by O, the number of solutions for an z X n
board. We claim that

Qn = Qn—l + (n - I)Qn—z . (18)

For proof, note that a rook in the first column may or may not occupy the square
in the lower left corner of the board. In the first case, deletion of the row and col-
umn determined by this square leaves us with a symmetric arrangement of » — 1
rooks on an (z — 1) X (r — 1) board, and the number of such arrangements is
O,_1 - In the second case, the rook may occupy any one of # — 1 squares in the
first column and has a partner located symmetrically with respect to the diagonal.
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Deletion of the rows and columns determined by the two corresponding rooks
leaves us with a symmetric arrangement of # — 2 rooks on an (7 — 2) X (n — 2)
board. Since there are Q,,_, such arrangements and » — 1 possible locations of
the rook in the first column, there are (n — 1)Q,_, solutions associated with this
case. Relation (18) follows.

The number Q, satisfies the relation

1
1-2-3

Qn=1+Ci 4 CiChy + CHCLChyt - (19)

To prove (19), we separate the arrangements of the rooks into classes by
putting into the sth class all arrangements in which s pairs of rooks are not on the
diagonal.

Reasoning as in the previous problem, we can show that the number B, of
arrangements of 7 rooks on an # X 7 chessboard in which no rook can attack
another and in which the rooks are symmetric with respect to both diagonals
satisfies the relations

By, = 2B, 5 + (2n — 2)B,, 4, Byni1 = By, .

Two Knights

In how many ways can a black and a white knight be placed on an m X n chessboard
5o that they cannot attack each other?

The complexity of the problem is due to the fact that the number of moves
available to the knight varies with its location. For example, if m > 5 and
n > 5, then a knight located at a corner square has a choice of two moves,
a knight located at various edge squares has a choice of three or four moves, and
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a knight located at the center has a choice of eight moves. This variety of choices
reflects the variety of ways in which a knight can move: for example, it can move
one square forward and two squares up, or two squares back and one square
down, and so on. All told, a knight can move in 8 ways which differ in the length
and direction of their horizontal and vertical components. These 8 ways can be
described as follows:

2,1, (1,2), (=1,2), (=2,1), (=2,-1), (=1 -=2), (1,=2), 2, 1)

This suggests that we think of a knight as a combination of 8 pieces each of
which moves in one way only. These “elementary” knights are relatively easy
to work with. T'o compute the number of ways of placing a (2, 1)-knight on our
board so that it represents a threat to a piece on the board, we note that we must
ignore the last two columns and the last row. This means the column can be
chosen in 7 — 2 ways, and the row can be chosen in m — 1 ways. Consequently,
there are (m — 1)(n — 2) ways of placing a (2, 1)-knight on an m X 7 board so
that it can attack some piece on the board. By symmetry, this is also the number
of ways of placing a white (—2, —1)-, (—2, 1)-, ora (2, —1)-knight so that it can
attack a black knight. For a white (1, 2)-, (—1, —2)-,(—1, 2)-, or a (1, —2)-knight
the corresponding number is (m — 2)(n — 1). It follows that the number of
ways of placing two knights of different color so that they can attack each other is

4(m — 1)n — 2) + (m — 2)(n — 1)] = 2[(2m — 3)2n — 3) — 1].

The number of ways of placing two knights of the same color on the board so
that they can protect each other is half of the above number (this is so because the
knights are interchangeable). The number of ways of placing two knights of
different color so that they can not attack each other is

m2n? — 9mn + 12m + 12n — 16.

(‘Two knights can be placed on an m X n board in mn(mn — 1) ways.)

Inventors of chess problems sometimes introduce “fairyland” pieces which do
not move like their ordinary counterparts. Following this idea, we introduce a
(p, q)-knight, p = 0, ¢ = 0. A (p, g)-knight moves p squares horizontally (in
either direction) and ¢ squares vertically (in either direction); for example,
an ordinary knight is the composite of a (1, 2)-knight and a (2, 1)-knight.
Arguing as before we can show that, if 0 << p <{n, 0 << ¢ < m, then there are
4(rn — p)(m — q) ways of placing two (p, ¢)-knights of different color on an
m X n board so that they can attack each other. If p = 0 or ¢ = 0, then the
corresponding number is cut in half. The number of ways of placing two
(2, 9)-knights of the same color so that they protect each other is 2(z - p)(m - g).

Any chess piece can be viewed as a composite of (p, g)-knights for different
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values of p and ¢. For example, a chess king is composed of a (0, 1)-knight,
a (1, 0)-knight, and a (1, 1)-knight. Hence the number of ways of placing two
kings of different color on an m X 7 chessboard so that they can attack each
other is

2n(m — 1) + (n — 1)ym + 2(n — 1)(m — 1)] = 8mn — 6m — 6n + 4.

It follows that there are m®n® — 9mn + 6m + 6n — 4 ways of placing them so
that they cannot attack each other.

A chess bishop is the composite of a (1, 1)-, a (2, 2)-,..., a (p, p)-knight,
where p is the smaller one of the numbers m and n. We assume for definiteness
that m < 7. Then p = m — 1 and we see that the number of ways of placing two
bishops of different color on the board so that they can attack one another is

=N -1+ —2)m—=2)+ -+ —m+1) 1]

If we remove brackets and make use of the formulas for the sum of the natural
numbers from 1 to # — 1 and for the sum of the squares of these numbers, then
the above number of ways can be written as 2m(m — 1)(3n — m — 1)/3. If
m = n, then we must interchange the roles of m and #. In particular, if m = =,
then the number of ways is 2m(m — 1)(2m — 1)/3.

The number of arrangements of rooks can be computed more easily in the
following manner: A white rook can be placed on each of the mn squares of the
board. Then it threatens m | n — 2 squares. Each of these squares can be
occupied by a black rook. Hence the number of ways of placing two rooks of
different color on the board so that they can attack one another is mn(m + n — 2).

Since a queen can be viewed as a composite of a rook and a bishop, it follows
that the number of ways of placing two queens of different color on an m X =
board, m < n, so that they can attack each other is

gm(m — 1)3n —m — 1) + mn(m 4+ n — 2).

If m = n, then this expression reduces to ¢m(m — 1)(5m — 1). We leave it to
the reader to compute the number of ways of placing these pieces so that they
cannot attack each other.
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Recurrence Relations

On a number of occasions we solved combinatorial problems by reducing them
to problems involving a smaller number of objects. We used this approach in
deducing the formula for the number of arrangements with repetitions (see p. 3)
and in solving most of the partition problems in Chap. IV. The method of
reducing a problem to an analogous problem involving a smaller number of
objects is called the method of recurrence relations (from the Latin recurrere—
to return). Using a recurrence relation we can reduce a problem involving 7
objects to one involving n — 1 objects, then to one involving n — 2 objects, and
so on. By successive reduction of the number of objects involved, we eventually
end up with a problem which can be easily solved. In many cases it is possible to
obtain from a recurrence relation an explicit formula for the solution of a
combinatorial problem.

By way of an illustration we consider the problem of finding the number P, of
permutations of z elements.

In Chap. II (p. 19) we deduced the formula P, = #! from the formula for the
number of arrangements without repetitions. Now we deduce the same formula
by first finding a recurrence relation satisfied by P, .

Leta, ..., a,_, , a, be n objects. An arbitrary permutation of these objects can
be obtained by adjoining a, to a permuation of a, ,..., a,_, . It is clear that 4, can
occupy various positions: it can be put to the left of a, , between «, and 4, , and
so on. In all, 4, can occupy = different positions. This means that each permuta-
tion of the n — 1 elements g, ,..., a,_; gives rise to n» permutations of the =
elements. Hence the numbers P, and P,_, are connected by the recurrence
relation P, = nP,_, .

118
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Using this relation, we obtain the chain of equalities
P,=nP, ,=nn— 1P, ,=nn—1) 2P, .

Since P; = 1 (one element gives rise to just one permutation), we again obtain
the formula P, = =n!.

We have encountered many recurrence relations in connection with partition
problems, with problems involving pieces on a chessboard, and so on. Now we
consider additional problems of this type, and at the end of the chapter we
consider aspects of the general theory of recurrence relations.

Fibonacci Numbers

In his book ‘“Liber Abaci” published in 1202, the Italian mathematician
Fibonacci posed, among others, the following problem:

Each month the female of a pair of rabbits gives birth to a pair of rabbits (of
different sexes). Two months later the female of the new pair gives birth to a pair of
rabbits. Find the number of rabbits at the end of the year if there was one pair of
rabbits in the beginning of the year.

We see that at the end of the first month there will be 2 pairs of rabbits. At the
end of the second month just one of these 2 pairs will have offspring and so the
number of pairs of rabbits will be 3. At the end of the third month the original
pair of rabbits as well as the pair born at the end of the first month will have
offspring and so the number of pairs of rabbits will be 5.

Let F(n) denote the number of pairs of rabbits at the end of the #th month.
At the end of the (n 4 1)th month there will be F'(z) pairs of ““0ld”’ rabbits and as
many pairs of “new’” rabbits as there were pairs of rabbits at the end of the
(r — 1)th month, that is, F(n — 1). In other words, we have the recurrence
relation

F(n + 1) = F(n) 4+ F(n — 1). (1)

Since we know that F(0) = 1 and (1) = 2, it follows that F(2) = 3, F(3) = 5,
F(4) = 8, and so on.

In particular, F(12) = 377.

The numbers F(n) are called Fibonacct numbers. These numbers have many
remarkable properties. We are about to express the Fibonacci numbers in
terms of the numbers C¥ . To this end, we establish a connection between the
Fibonacci numbers and the following combinatorial problem:

Find the number of n-sequences of zeros and ones with no two ones in a row.

To establish the required connection, we associate with a sequence of this
type the pair of rabbits for which the sequence serves as a “genealogical tree.”
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By this we mean that the ones in the sequence correspond to the months of birth
of the various pairs of “forbears” of our pair of rabbits (including the pair itself),
and the zeros in the sequence correspond to the remaining months. For example,
the sequence 010010100010 determines the following genealogical tree: the pair
of rabbits was born at the end of the 11th month, its parents were born at the end
of the 7th month, its ““grandparents’ were born at the end of the 5th month, and
its “great grandparents” were born at the end of the 2nd month. The genealogical
tree of the original pair of rabbits is 000000000000.

It is clear that none of our sequences can contain two ones in a row (a new pair
of rabbits cannot have offspring in a month). Also, different sequences correspond
to different pairs of rabbits and, conversely, different pairs of rabbits have
different genealogical trees. The latter fact follows if we bear in mind that a litter
invariably consists of a single pair of rabbits.

The correspondence just established shows that the number of n-sequences
satisfying the prescribed conditions is F(n).

Now we show that

Fny=Clyy +CL +C2) - +C2 1, (2)

where p = E[(n + 1)/2]. Here, as usual, E(«) denotes the integral part of «.



Another Method of Proof 121

F(n) denotes the number of z-sequences of zeros and ones with no two ones in
a row. The number of such sequences with just 2 ones and n — & zeros is
CE_,.1 (see p. 45). Since k <7 — k + 1, it follows that k varies from 0 to

E[(n + 1)/2]. Now relation (2) is implied by the rule of sum.
Relation (2) can be deduced in a different manner. We put

G(n) = C?z+1 + qua +Ciy+ -+ Crpi1 5
where p = E[(n + 1)/2]. The equality C¥ = C¥_, 4 C/~] implies readily that
G(n) = G(n — 1) + G(n — 2). (3)

Also, G(1) = 2 = F(1) and G(2) = 3 = F(2). Since the sequences G(r) and
F(n) satisfy the recurrence relation X(n) = X(n — 1) + X(n — 2), it follows that

G(3) = GQ2) + G(1) = FQ2) + F(1) = F(3),

and, in general, G(n) = F(n).

Another Method of Proof

In the previous section we established directly a connection between the
Fibonacci problem about the rabbits and a combinatorial problem. Another way
of establishing this connection is to show directly that 7(n), the number of
solutions of the combinatorial problem for a given 7, satisfies the recurrence
relation

Tm+1) = T(n) + T(n — 1), (4)

which is the analog of the recurrence relation (1) satisfied by the Fibonacci
numbers.

Consider an (n + 1)-sequence of zeros and ones with no two ones in a row.
This sequence can end in a 0 or a 1. If the sequence ends in a 0, then deletion of
this 0 yields an #-sequence satisfying our condition. Conversely, if we add a 0 at
the end of an n-sequence of zeros and ones with no two ones in a row, then we
obtain an (n + 1)-sequence satisfying the same condition and ending in a 0. This
shows that the number of “good” (# 4 1)-sequences ending in a 0 is T(n).

Now consider a sequence ending in a 1. Since there are no two ones in a row,
this 1 must be preceded by a 0. In other words, our (n + 1)-sequence ends in 01.
Deletion of these two digits yields a ““good” (z — 1)-sequence. Hence the number
of good (n + 1)-sequences ending in a 1 is 7(n — 1). Since our sequences must
end in either a 0 or a 1, it follows by the rule of sum that T(n + 1) = T(n) +
T(n—1).
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We see that T'(n) and F(n) satisfy the same recurrence relation. This does not
prove that the sequences F(n) and T(n) coincide. After all, factorials and sub-
factorials (see p. 52) satisfy the same recurrence relation

X(n + 1) = n[X(n) + X(n — 1)]. (3)

However, for factorials 0! = 1, 1! = 1, and for subfactorials D{0) = 1, D(1) = 0.
That is why all subsequent entries in one of these sequences differ from the
corresponding entries in the other sequence.

To show that the sequences T'(n) and F(n) coincide, it remains to show that
T(1) = F(1) and T(2) = F(2). To see this, note that there are just two good
1-sequences, namely 0 and 1, and just three good 2-sequences, namely 00, 01,
and 10. But then 7(1) = 2 = F(1) and T(2) = 3 = F(2). This completes the
proof of the coincidence of the sequences T'(n) and F(z).

Successive Partitions

Many combinatorial problems can be solved by the method employed in the
previous section. If f(n) denotes the number of solutions of a combinatorial
problem, then it may be possible to find f(z) by showing that f(n) satisfies the
same recurrence relation as the available solution g(#n) of another combinatorial
problem, and that both sequences have in common sufficiently many initial
terms. (The exact meaning of the term “sufficiently many” will be clarified in
the sequel.)

We apply the technique just outlined to obtain the solution of the following
problem: Given 7 objects arranged in some definite order. We partition this
ordered set into two nonempty subsets so that the elements of one subset are to
the left of the elements of the other subset. Then each subset with more than one
element is again subdivided in the same manner into two nonempty subsets. This
process continues until we end up with one-element subsets. We are required to
find the number of (distinct) partition procedures (two procedures are defined as
different if they yield different results at one or more steps).

Let B, denote the number of ways of partitioning » | 1 ordered objects. The
first step in the partition process can be accomplished in 7 ways (the left subset
may contain one object, two objects,..., 7 objects). We separate accordingly our
partition procedures into 7 classes and put in the sth class all those partition
procedures which start by assigning s elements to the left subset.

We compute the number of procedures in the sth class. Any procedure in this
class separates the initial ordered set into a left subset with s elements and a
right subset with # — s 4 1 elements. The number of partition procedures
applicable to the initial left subset is B,_; and the corresponding number for the
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initial right subset is B,,_; . By the rule of product, the number of procedures in
the sth class is B,_,B,_; . By the rule of sum we have

B, =ByB, ; + BB, ; + "+ B, ,B,. (6)

We have obtained a recurrence relation for B, . This recurrence relation
occurred in connection with the solution of the problem of the queue in front of
the box office (see p. 63). There we showed that this recurrence relation is
satisfied by the numbers

|

T,n = n——l——l CZn .
To prove the equality
1
B, = T, = 7= Ch )

for all » > 0, that is, the equality of the sequences B, , B, ,... and T, T} ,..., it
it remains to prove that B, = T, . But this follows readily from the fact that
To=C{ =1 and B, = 1 (the one partitioning procedure applicable to an
initial set consisting of a single element is to leave it alone). T'o sum up:

The number of procedures for the successive subdivision of an ordered set of n | 1
elements is

T 1

n=n+lc2n

Multiplication and Division of Numbers

Consider » numbers a4, ,..., @, arranged in a definite order. In view of the
associativity of multiplication, the product of these numbers can be computed in
various ways (without upsetting their initial order). For example, the product of
three numbers can be computed in two ways ((ab) ¢ = a(bc)), the product of four
numbers can be computed in five ways, and so on. We are required to find the
number of ways of computing the product of n numbers arranged in some definite order.

It is clear that each multiplication scheme corresponds to a partition procedure
of the » numbers into # one-number parts. For example, the multiplication
scheme (ab)(cd) for four numbers corresponds to the partition procedure
a|b|cld, and the multiplication scheme ((ab)c) d corresponds to the partition
procedure a| b | c|d. It follows that the number of ways of computing the
product of # numbers (arranged in definite order) is equal to the number of
partition procedures of a set of # elements, that is, 7,,_; = (1/2) C3. %5 .

If we take into consideration the commutativity of multiplication, then the
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number of ways of computing our product is increased by a factor of #! This is so
because there are n! ways of permuting our z numbers, and each permutation
gives rises to T,,_; multiplication schemes. It follows that our » numbers can be
multiplied in »!T,_; = (n — 1)! C&%, ways.

This result can be arrived at directly without the use of the formula for the
number of partition procedures. The direct derivation which we are about to
present gives a new method for obtaining the number of partition procedures
and, therefore, also a new method for obtaining the number of good queues at
the box office (in the special case when the number of people with dollar bills is
equal to the number of people with half-dollar coins).

Suppose we have already found the number @(n) of ways of multiplying »
numbers. We introduce an additional factor a,,, and compute the number of
ways of adjoining a,, to a definite product of the numbers 4, ,..., a, .

Two obvious ways of adjoining a,,, are to premultiply or postmultiply the
product of a, ,..., a, by a,,, . As for other ways of adjoining a,,, , we note that
multiplication of » numbers involves n — 1 successive multiplications of two
numbers each. The number a,,, can enter each of these two-number multiplica-
tions in 4 ways (on either side of either factor). It follows that a,, ,; can be adjoined
to our product in 2 4 4(n — 1) = 4n — 2 ways.

This implies the recurrence relation

d(n 4+ 1) = (4n— 2) P(n)
Using this relation and the fact that (1) = 1, we see that
On) =26 (4n—6)=2"1-1-3--(2n — 3).
Since

(2n — 2)!

O =271 -1-3 (20— 3) =

=@m— )G,

we see that our present argument yields the same answer to our problem as the
earlier argument.
Now we turn to division. To give meaning to the expression

@ ®)

we must indicate the order in which the various divisions are to be carried out.
To see in how many ways we can assign meaning to (8), we observe that each
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assignment of the order in which the divisions are to be carried out corresponds
to a procedure for partitioning an ordered set of # elements into one-element
subsets. Since we know that the number of such procedures is (1/#) CZ1, , it
follows that the number of ways of assigning meaning to the expression in (8) is

likewise (1/n) C3. 2, .

Polygon Problems

Some issues in quantum chemistry give rise to the following problems:

A regular 2n-gon is inscribed in a circle. In how many ways is it possible to join
its vertices in pairs so that the resulting segments do not intersect one another ?

For n = 0, we define the number of ways to be one. For = 1, the number of
ways is one.* For n = 2, the number of ways 1s two (see Fig. 31). To find the

Fic. 31

number of ways F(n) for an arbitrary n, we deduce a recurrence relation for
F(n). A particular vertex 4 of our polygon can be joined to a vertex B if and only
if the number of vertices on either side of AB is even (see Fig. 32). The various
ways of joining the vertices can be separated into classes in accordance with the
number of vertices, say, to the left of the segment AB.

If the number of vertices to the left of AB is 2s, then the number of vertices to
the right of AB is 2(n — s — 1). Hence our 2n-gon is subdivided into a 2s-gon
and a 2(n — s — 1)-gon. Now the number of ways of joining the vertices of a
2s-gon in pairs without segments intersecting one another is F(s). The corre-
sponding number fora2(n — s — 1)-gonis F(n — s — 1). By the rule of product,
the number of procedures in the sth class is F((s) F(n — s — 1). This implies that

Fin) =FO0)Fn — 1)+ F(1)F(n — 2) + - +F(n — 1) F(0).
The recurrence relation just established for the numbers F(#) is the same as the

* We regard a diameter as a regular 2-gon.
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n-4, s=2
Fic. 32

recurrence relation satisfied by the numbers T, = [1/(n 4+ 1)] C3, . Since
F(0) = T, = 1, it follows that F(n) = T, for allz > 0. In other words, there are
T, = [1/(n + 1)] C3, ways of joining the vertices of a 2n-gon so that no two
segments intersect one another.

The same answer holds for the following problem:

In how many ways is it possible to subdivide a convex (n + 2)-gon into triangles
by means of diagonals which do not intersect in the interior of the polygon?

Let @(n) denote the number of ways of subdividing the (» 4 2)-gon for n > 0,
and let #(0) = 1. Designate one side of the polygon as a special side. Each
subdivision includes a triangle one of whose sides is the special side of the
polygon. Designate this triangle as the special triangle. Now put in the same
class all subdivision procedures which share a special triangle (Fig. 33). If
deletion of the special triangle associated with a class of subdivision procedures
leaves us with an (s 4+ 2)-gon and an (n — s 4 1)-gon, then, by the rule of
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product, the number of procedures in this class is §(s) @(n — s — 1). By the rule
of sum, the total number of subdivision procedures of our (z + 2)-gon is

B(n) = B0) D(n — 1) + (1) D(n — 2) + - + Dn — 1) H(0).

Since P(0) = 1, we see that

On) = T, =

The Head Steward Faces a Difficulty

In some combinatorial problems we must set up not one recurrence relation
but a system of recurrence relations connecting a number of sequences. These
relations express the (n + 1)th term of each sequence in terms of the lower terms
of all the sequences.

King Arthur’s head steward was faced with the task of seating 6 pairs of hostile
knights at the Round Table. In how many ways could he seat the knights without
seating two foes side by side?

Any acceptable seating arrangement of the knights gives rise to 11 more
acceptable seating arrangements obtained by moving each knight the same
number of seats in the same direction. We do not regard two acceptable seating
arrangements as different if they differ only by a cyclic rearrangement.

Let the number of knights to be seated be 2n. Let 4, be the number of seating
arrangements with no hostile neighbors. Let B, be the number of seating
arrangements with just one pair of hostile neighbors. Finally, let C,, denote the
number of seating arrangements with just two pairs of hostile neighbors.
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We deduce a formula which expresses 4,,,, in terms of 4,,, B, , and C, .
Consider a seating arrangement of # + 1 pairs of hostile knights with no hostile
neighbors. We suppose the pairs of hostile knights numbered. We ask the hostile
pair numbered # + 1 to leave the table. Now there are three possibilities: either
there are no hostile neighbors among the remaining 2n knights, or there is
exactly one pair of hostile neighbors, or there are exactly two pairs of hostile
neighbors (each of the two departing knights could have sat between two foes).*

We explain in how many ways we can again seat the (# + 1)th pair of knights
so as to end up with a seating arrangement with no hostile neighbors.

The case when there are two pairs of hostile neighbors among the 2z remaining
knights is easiest to deal with. Then each of the two returning knights must
separate one pair of hostile neighbors. This can be done in two ways. Since the
number of seating arrangements of 2z knights with exactly two pairs of hostile
neighbors is C,, , the number of seating arrangements in this case is 2C,, .

Now consider the case when there is exactly one pair of hostile neighbors
among the 2z remaining knights. Then one of the returning knights must sit
between the two hostile neighbors. There are now 27 + 1 knights at the table
and there are 2n - 1 seats between them. Since the second returning knight must
not sit to either side of his foe, he can choose one of 2n — 1 seats. Since either one
of the knights can be seated first, there are 2(2n — 1) ways of seating the two
knights at the table.In view of the factthat the number of seating arrangements of
2n knights with exactly one pair of hostile neighbors is B, , the number of
seating arrangements in this case is 2(2n — 1) B,, .

Finally, consider the case when there are no hostile neighbors among the 27
remaining knights. Then the first returning knight can take any of the 2n
available seats and the second returning knight can take one of 2z — 1 seats
(he must not sit next to his foe). We see that the two returning knights can be
seated at the table in 2n(2n — 1) ways, and so the number of seating arrangements
in this case is 22(2n — 1) 4,, .

As already noted, the three possibilities investigated above exhaust all the
possibilities. This means that 4, ,, satisfies the recurrence relation

Apyy = 20020 — 1) 4, + 2(2n — 1) B, + 2C,. )

This relation alone does not determine A, for all values of 7. Analogs of (9)
are needed for B, ,; and C,,, . We deduce these analogs next.

Consider a seating arrangement of the 2n 4 2 knights, n > 1, with exactly one
pair of hostile neighbors. The number of such seating arrangements is B,,,, . To
avoid an argument at the table, we ask the two hostile neighbors to leave the
table. Now there are two possibilities: either there are no hostile neighbors

* Here and in the sequel, we suppose n > 1. For n = 1, the argument which follows
is irrelevant.
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among the remaining 2z knights or there is exactly one pair of hostile neighbors
(they were separated by the two hostile neighbors who were asked to leave the
table). In the latter case, the two returning foes must again occupy the two seats
they vacated when asked to leave the table (otherwise we would end up with two
pairs of hostile neighbors at the table), and this they can do in two ways. Since
there are B,, ways of seating 2n knights so that there is exactly one pair of hostile
neighbors, we end up with 2B, seating arrangements. In the former case, the
returning pair can be seated in any of the 2u available seats. In view of the
possibility of members of the pair interchanging their seats, the two foes can be
seated at the table in 4n ways. Combining this with the 4, seating arrangements
of 2n knights with no hostile neighbors we obtain 474, seating arrangements.
Also, in either of the two cases under discussion, the number of the distinguished
pair of foes can be chosen in n 4 1 ways. It follows that B,,, satisfies
the recurrence relation

Byyy=4n(n+1)A4,+2rn+ 1)B,. (10)

Finally we consider the case when there are two pairs of hostile neighbors
among the 2n + 2 knights at the table. The numbers of the two hostile pairs can
be chosen in C2,, = n(n + 1)/2 ways. If we replace each hostile pair of knights
with one new knight and regard the two new knights as foes, then we end up
with 2n knights and no hostile neighbors (this case arises when the two new
knights are not seated side by side) or exactly one pair of hostile neighbors.

There are A, seating arrangements of 2z knights with no hostile neighbors.
We can go from one of these seating arrangements to the original seating pattern
in four ways due to the possibility of interchanging the knights in each of the two
hostile pairs. This means that the 4, seating arrangements give rise to 4C>, 4,
seating arrangements which conform to the original pattern.

There are (1/n) B, seating arrangements with exactly one designated pair of
hostile neighbors. Reasoning as before, we see that these (1/#) B, seating
arrangements give rise to 4C%_, - (1/n) B, = 2(n - 1) B,, seating arrangements
which conform to the original pattern. With both cases taken into consideration,
we see that forn > 1

Coyy=2n(n+ 1)A4,+2n+1)B,. (11)
All in all, we obtain the following system of recurrence relations valid forn > 2:
Apyy = 221 — 1)(nd, + B,) +2C,, 9)
B,y = 2n + 1)2n4, + B,), (10)
Crpn = 2n + 14, + By). (11)
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A simple computation shows that 4, =2, B, = 0, C, = 4. Now relations
(9)~(11) give the values A3 = 32, B; = 48, C3 = 24. Continuing, we find that
the 6 pairs of hostile knights confronting the head steward could be seated in
Ay = 12,771,840 ways.

The problem just solved is similar to the following problem frequently
referred to as “‘the guest problem.”

In how many ways is it possible to seat n married couples at a round table so that
men and women alternate and so that no man is seated next to his wife?

This problem is solved in a manner similar to that used to solve the problem
of the chief steward. We begin by seating the women. If we number the seats then
the women occupy all the even-numbered seats or all the odd-numbered seats.
In either case the women can be seated in 7! ways. This means that altogether the
women can be seated in 2 - (n!) ways. Then we consider the number of seating
arrangements with no couple sitting together, with just one couple sitting
together, and with just two couples sitting together, We leave it to the reader to
deduce the appropriate system of recurrence relations.

Lucky Bus Ticket Numbers

Some people regard a bus ticket as lucky if it shows a six-digit number with
the property that the sum of the digits in the even positions is equal to the sum of
the digits in the odd positions. For example, the ticket numbered 631,752 is
lucky because 6 + 1+ 5 =3+ 7 + 2 = 12. We compute the number of
lucky tickets showing every possible six-digit number (from 000,000 to 999,999).

First we consider the problem of computing the number of three-digit numbers
with digit sum N (here we include numbers like 075 and 000). This problem is
similar to the problem solved on p. 77. Stated in terms of that problem, our
present problem is to compute the number of ordered partitions of the number N
into 3 summands drawn from the numbers 0, 1,..., 9. The number F(3, 9; N)
of solutions of this problem satisfies the recurrence relation

FB,9N)=F2,9N)+F2,9,N—1)
+F2,95N—2)+F2,9%5N—-3)4+F2,9, N—4)
+F2,9N—-54+F2,9N—6)+F2,95N—-17)
+F(2,9,N—28)+F(2,9,N—-9).

Similarly,
F2,9N)=F(1,9, N)+F(1,9N—1)+ - +F(1,9;, N—9).

Itis clear that F(1, 9; N) = 1, for 0 << N < 9, and that F(1, 9; N) = 0 otherwise,
Using these relations we can easily complete the following table:
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N012 3 45 6 7 8 91011121314151617 18 19 20 21 22 23 24 25 26 27

({111 111111 100O0O0O0O0CO0OCO0O0OO0OO0OOOOOOOO
21123 4 5 6 7 8 910 98 76 54 2310000O0O0O0O00O0
3113610152128 364555636973 757573696355453628211510 6 3 1

To find the number of lucky tickets we must square each entry in the third
row of our table and add the results. In fact, for each lucky ticket, the sum of the
digits in the even positions is equal to the sum of the digits in the odd positions.
Suppose this sum is N. The entry in the Nth position in the third row of our
table tells us how many three-digit numbers have digit sum N. Hence this entry
also tells us in how many ways we can choose the digits in either the even or the
odd positions of those lucky numbers for which the sum of the digits in either the
even or the odd positions is N. Since these two sets of choices are independent
of each other, the number of lucky numbers for which the sum of the digits in the
even positions is N is equal to [F(3,9; N)]2. By the rule of sum, the total of
lucky numbers is

212 4+ 32 4 6% 4 10% 4 152 212 + 282 + 362 4 45°
1 55% 4 632 4 692 + 732 + 757).

This number is equal to 55,252.

Recurrent Tables

Many of the magnitudes in combinatorics depend on more than one number.
For example, C* depends on # and k. If a magnitude F(n, k) depends on two
natural numbers » and £, then its values can be arranged in a table by placing the
number F(n, k) at the intersection of the nth row and the Ath column. In Chap. V,
we encountered a number of such magnitudes as well as their tables. The
arithmetical square, the arithmetical triangle, and the generalized arithmetical
triangles are instances of just such tables. '

In all of the examples in Chap. V, the elements in each table were connected by
certain relations. These relations made it possible to compute the elements in the
nth row from the elements in the preceding row and, possibly, from a few initial
elements in the nth row. Therefore, given the elements of the first row and the
initial elements of the other rows, it was possible to compute successively the
entries in all the remaining rows. Such tables resemble recurrent sequences and
therefore we refer to them in the sequel as recurrent tables.
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For the arithmetical square, we had the recurrence relation
Fn,k) =F(n— 1,k) + F(n, k — 1), (12)

and the boundary conditions F(r, 0) = 1, F(0, k) = 0, for £ > 0 (we recall that
in the case of the arithmetical square the count of rows and columns started
with zero and not with one).

The recurrence relations which govern the arithmetical pentagon and hexagon
are also of the form (12). This is hardly surprising if we recall that these tables tell
us in how many ways a certain square can be reached by a rook moving on a
chessboard bounded by two perpendicular rays and by one or two lines parallel
to the principal diagonal. A rook can reach the square (n, k) from the square
(n — 1, k) or from the square (¢ — 1, n). This means that regardless of the
restrictions imposed on the rook, the number of ways in which it can reach a
certain square is governed by relation (12). The restrictions assign the value 0
to certain entries in the table. In the case of the arithmetical pentagon the entries
in question are those above a certain line parallel to the principal diagonal, and
in the case of the arithmetical hexagon the entries in question are those outside a
region bounded by two lines parallel to the principal diagonal.

The recurrence relations governing the arithmetical triangle and the m-
arithmetical triangle are different from relation (12). The recurrence relation for
the m-arithmetical triangle is

Fn,Ry)=Fn—1L,k—m+ 1)+ Fn—1L,k—m+2)4+ - +Fln—1,%),
(13)
with F(0, 0) = 1 and F(0, k) = O, for £ > 0.

Another Solution of the Problem of the Chief Steward

As an additional example of the use of recurrence relations, we give another
solution of the problem of the chief steward (see p. 127). The reader will recall
that the problem concerned the number of ways of seating 27z knights at a round
table so that no two foes sat side by side (the 27z knights made up # pairs of foes).

We denote by F(m, n) the number of seating arrangements with exactly m pairs
of hostile neighbors. We deduce a recurrence relation which expresses F(m,n + 1)
in terms of F(k, n), k =m — 1, m,m+ 1, m + 2.

We assume that, to begin with, z pairs of knights are seated at the table and that
subsequently an (z + 1)th pair of foes arrives and is seated at the table. We
compute the number of ways in which we can obtain a seating arrangement with
m pairs of hostile neighbors. The following cases arise:
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(a) There are initially m — 1 pairs of hostile neighbors at the table. This can
happen in F(m — 1, n) ways. If we are to end up with m pairs of hostile neighbors,
then the new pair must stay together and not separate a pair of hostile neighbors
already seated at the table. This means that of the 2z spaces between the 2n
knights at the table m — | spaces are barred to the newcomers. This leaves
2n — m -+ 1 spaces for the newcomers. Each of these spaces can be occupied by
either one of the two newcomers. It follows that the number of seating arrange-
ments arising in this case is

22n —m 4+ 1)F(m — 1, n). (14)

(b) There are m pairs of hostile neighbors at the table. The newcomers can sit
apart without separating a pair of hostile neighbors or they can sit together
between two hostile neighbors. It is easy to see that the first possibility can be
realized in (2n — m)(2n — m — 1) ways, and the second possibility can be
realized in 2m ways. This gives a total of (2n — m)2 — 2n 4 3m possibilities.
Since the number of seating arrangements of 2z knights with exactly s pairs of
hostile neighbors is F(m, n), this case gives rise to

[((2n — m)> — 2n + 3m] F(m, n) (15)
seating arrangements.

(c) There are m + 1 pairs of hostile neighbors at the table. This can happen
in F(m + 1, n) ways. One of the newcomers must separate a pair of hostile
neighbors and the other must not separate a pair of hostile neighbors or sit next
to the first newcomer. It follows that the number of seats available to the first
newcomer is m 4 1 and the number of seats available to the second newcomer is
2n — m — 1. The number of seating possibilities for the pair of newcomers is
2(m + 1)(2n — m — 1) (the factor 2 appears because either one of the two new-
comers can separate a pair of hostile neighbors). It follows that this case gives rise
to

2m 4+ 1)2n —m — 1) F(m + 1, n) (16)

seating arrangements.

(d) There are m + 2 pairs of hostile neighbors at the table. This can happen
in F(m + 2, n) ways. If we are to end up with a seating arrangement with m pairs
of hostile neighbors, then each of the two newcomers must separate a pair of foes.
This means that the first newcomer can be seated in m -+ 2 ways and the second
newcomer can be seated in m 4 1 ways. It follows that in this case we end up with

(m 4+ 1)(m + 2) F(m + 2, n) (17)

seating arrangements.
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It is easy to see that we have considered all possible ways of seating 2n | 2
knights at a round table so as to end up with z pairs of hostile neighbors. But then
F(m, n) must satisfy the recurrence relation

Fmn+1)=22n—m + 1) F(m — 1, n)
+ [(2n — m)2 — 2n + 3m] F(m, n)
+2(m+ 1D2n —m — 1) F(m + 1, n)
+ (m 4+ 1)m + 2) F(m + 2, n). (18)

Direct computation shows that

(we do not distinguish between seating arrangements which differ by a rotation).
Using Formula (18), we find that F(0, 6) = 12,771,840.

Solution of Recurrence Relations

We say that a recurrence relation is of order k if it allows us to express f(n + k) in
terms of f(n), f(n + 1),..., f(n + kE— 1). For example,

fr+2)=f@fln+1D)—3r+1) +1

is a recurrence relation of order two, and

fr+3) =6fm)f(n +2) +f(n+ 1)

is a recurrence relation of order three.

A recurrence relation of order % is satisfied by infinitely many sequences. The reason
for this is that the first 2 elements can be assigned in an arbitrary manner, for they are
not restricted by any relations whatsoever. On the other hand, if the first & elements are
prescribed, then the remaining elements are uniquely determined; the recurrence relation
enables us to express the element f(k + 1) in terms of f(1),..., f(k), the element f(k + 2)
in terms of f(2),..., f(k + 1), and so on.

By means of a recurrence relation and initial terms we can compute successively all
the terms of the sequence satisfying this relation. However, in many cases we are interested
in a definite term of this sequence and not in all its predecessors. In such cases it is con-
venient to have an explicit formula for the nth term of the sequence. This brings us to
the question of solutions of recurrence relations.

We call a sequence a solution of a given recurrence relation if the sequence satisfies the
recurrence relation. The sense of this nebulous definition is made clear by an example.
Consider the sequence f(n) = 2%, n = 1, 2,..., and the recurrence relation

fn+2) = 3f(n+ 1)—2f(n).

Wehave f(n + 2) = 2°+2, f(n 4+ 1) = 2%+, f(n) = 2%. We say that the sequence f(n) = 2%,
n = 1, 2,..., is a solution of the recurrence relation because 27+% = 3 . 27+1 — 2 . 27,
foralln =1, 2,...
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A solution of a recurrence relation is called general if it depends on k arbitrary constants
and if every solution of the recurrence relation can be obtained by assigning suitable
values to the arbitrary constants. For example, consider the recurrence relation

fin+2) = 5f(n+ 1) —6f(n). (19)

We claim that
f) = 0,27 + O3 (20)
is the general solution of (19). It is easy to verify the fact that, whatevever the values of
C, and C, , the sequence (20) satisfies the recurrence relation (19). It remains to show that
every solution of (19) is uniquely determined by the choice of f(1) and f(2). Therefore

we must show that for every choice of numbers g and b it is possible to find numbers
C, and C, such that

2C, +3C;, = a
2!C, + 32C; = b.

This system of equations is the same as the system of equations

2C; 4+ 3Cy = a,

4C]_ ‘I‘ 9C2 — b. (21)

Since the system (21) has a (unique) solution C,, C, for every choice of the numbers a
and b, we conclude that f(n) in (20) is indeed the general solution of (19).

Linear Recurrence Relations with Constant Coefficients

There are no general rules for solving all recurrence relations. However, there is a class
of recurrence relations which can be solved by a uniform method. The class in question
is the class of recurrence relations of the form

fot+ R =afat+tk—D+afnt+tkik—2)+ -+ afln, (22)

where a, , a, ,..., a; are constants. Such relations are called linear recurrence relations with
constant coefficients.

First we consider the problem of solving such relations for £ = 2, that is we consider
the problem of solving recurrence relations of the form

fn+2) = afen+ 1)+ a fm). (23)

The solution of such relations is based on the following two assertions:

[1] If two sequences fi(n) and f,(n) are solutions of the recurrence relation (23), then
for every choice of numbers A4 and B the sequence f(n) = Af\(n) + Bfy(n) is also a
solution of this relation,

[2] Ifr, is a solution of the quadratic equation

r2 = a;vr + a,

then the sequence

fn = ":_1’ n=12.,
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is a solution of the recurrence relation

fin+2)=a,f(n+ 1) + a, f(n).
To prove [1], note that

filn + 2) = a, fi(n + 1) + as fi(n)
filn + 2) = a, filn + 1) + ay fo(n).

If we multiply the first of these equalities by 4 and the second by B and add the resulting
equalities, then we obtain the equality

Afi(n + 2) + Bfo(n + 2) = ay[Afi(n + 1) + Bfo(n + 1)] + a,[Afi(n) + Bfa(n)]),

which states that Af,(n) + Bfy(n) is indeed a solution of (23).
To prove [2], note that if f(n) = 77, then f(n + 1) = »} and f(n + 2) = .,
Multiplying the equality 2 = a7, + a, by r}~, we obtain the equality

n+1 n n—1
Yy = ar + ary

that is, the equality
fn +2) = a, f(n 1+ 1) + a; f(n).

We note that if the sequence {¥} '} is a solution of (23), then any sequence of the form

f) =" a=1,2,..

is also a solution of (23). For proof use assertion [1] with 4 = »["*1, B = 0.

Together, assertions [1] and [2] imply the following rule for the solution of a linear
recurrence relation of order two with constant coefficients:

To solve the recurrence relation

4D = afon+ 1) + a fn) (23)

form the quadratic equation
rt=qar+ a,. (24)
(This equation is called the characteristic equation of the recurrence relation (23).) If

Equation (24) has two distinct roots r, and 7, , then the general solution of (23) is given by

fln) = Cyry "+ Cyry

To justify this rule, note that in view of [2] the sequences fi(n) = ]! and fy(n) = r7 !
are solutions of our recurrence relation. But then, in view of [1], the same is true of the
sequence Cyri~! + Cory~ 1. It remains to show that every solution of (23) can be put in
this form. Any solution f(n) of a recurrence relation of order one is uniquely determined
by the values f(1) and f(2). In other words, it suffices to show that the system of equations

C, + C; = q,
Cyry+ Corp, =0
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has a solution for every choice of a and b. The reader can easily verify that the numbers

b— —b
o, b= o _ b

Yp—7y ¥y, — 7

are indeed a solution of this system of equations.

The case when the roots of the characteristic equation (24) coincide will be treated in
the next section.

We illustrate the use of our rule by solving the recurrence relation for the Fibonacci
numbers:

f) = fn—1) + f(n—2). (25)
The characteristic equation for this relation is
rP=r 41
The roots of this equation are
1+ V5 1— /5
n=Tg o nT T3

Therefore the general solution of the Fibonacei relation is

o= (0 e (50 2

(Note that in the general solution we used the exponent n rather than n — 1; this is
justified by the remark following the proof of [2] above.)

We defined the Fibonacci numbers as the solution of the recurrence relation (25)
satisfying the initial conditions f(0) = 1, f(1) = 2, that is, as the sequence 1, 2, 3, 5, §,
13,... . It is frequently convenient to put in the beginning of this sequence the numbers 0
and 1, that is, to consider the sequence 0, 1, 1, 2, 3, 5, 8, 13,... . It is clear that the new
sequence satisfies relation (25) and the initial conditions f(0) = 0, f(1) = 1. Putting
n = 0 and n = | in (26), we obtain for C, and C, the system of equations

Cl + C2 = 0:
V3
T (C1 — Cz) = 1.
The solution of this system is given by the numbers C; = 1/v/5, C; = —1/4/5. There-
fore the corresponding solution of relation (25) is
1 1+ V5" 1— V5\»
= —|{——] — |—] |. 2
ror = |(=57) (557 ] @

It is surely surprising (at least at first sight) that this expression takes on integral
values for all natural numbers n.
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The Case of Equal Roots of the Characteristic Equation

It remains to consider the case when the roots 7, , 7; of the characteristic equation are
equal. In that case the expression Cyr}~! + C,r3~' is no longer the. general solution, for
it reduces to

fn) = (C; + C 7yt = Cry

The above expression contains a single arbitrary constant C and, in general, it is not
possible to choose C so as to satisfy two initial conditions f(1) = a, f(2) = b.

It is clear that we must find a ‘‘suitable’ solution different from the solution fy(n) = 7.
In turns out that such a solution is fy(n) = mr}~'. In fact, if the quadratic equation
r® = a;r + a; has two equal roots r, = r,, then aq, = 2r,, a; = —ri. Now our
equation takes the form

rt = 2ryyr — r: .
But then the recurrence relation takes the form
fo+ ) = fn+ ) —r fm). (28)
With fy(n) = nr7~! we have
fln+2)=n+2D7A7,  filnt 1) =0+ Dr.
Substituting these values in (28), we obtain the obvious identity
(n+ 27" =2+ )y —

This shows that f,(n) = nr}~ is a solution of (28). It is a “‘suitable’” second solution of (28)
in the sense that

n—1

fn) = C7i ™ + Conry - = 11 (Cy + Can)

is the general solution of (28). We leave the verification of this fact to the reader.

Linear recurrence relations with constant coefficients whose order exceeds two are
solved in much the same way as linear relations of order two. Consider a relation of order %
of the form

frt+ R =af(rn+k—1)+ 4+ af(n). (29)

Its characteristic equation is

7= gt 4 - o,

If the roots r, ,..., 7, of this equation are all distinct, then the general solution of (29) is
given by

f) = Cyy '+ Cyrz "+ -+ Cury

On the other hand, if r, = r, = -+ = 7, , say, then this root is said to have multiplicity s
and we associate with it the s solutions

f) =71 fum) =m0, film) = A, ., flm) ="
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of the recurrence relation (29). In the general solution of (29) the part corresponding to
this root is

777Cy + Con + Cqn” + -+ + Ci™ ]

To illustrate the general theory, we apply it to the recurrence relation
Jn+ 48 =5fn+3)—6f(n+2)—4f(n + 1) + 8f(n).
Its characteristic equation is
r*—35r 4+ 6r2 4+ 4r—8 = 0.
The roots of this equation are
r = 2, r, = 2, r, = 2, rg = 1.
This implies that the general solution of our relation is given by

J(n) = 227C, 4+ Cun 4+ Cyn?] + Cy(—1)*"1,

Application of the Theory of Recurrence Relations to Information Theory

Earlier (see p. 75) we considered the problem of computing the number of different
messages which can be transmitted in time T if one knows how long it takes to transmit
the individual signals used to make up the messages. In this connection, we obtained the
recurrence relation

AT = F(T— 1) + F(T—t) + = + F(T—ta), (30)
with f(0) = 1 and f(T) = 0, for T < 0.

Let T, t,,..., t, be integers, and let the roots of the characteristic equation of (30) be
A; yeery A . With the roots different, the general solution of (30) can be written in the form

f(T) = CAL +  + Cit.
If A, has the largest absolute value of all the roots, then for large values of T, we have
F(T) ~ Cf.

This equality enables us to estimate the number of messages which can be transmitted
in time T by means of a given system of signals.

Third Solution of the Problem of the Chief Steward

The two solutions of the problem of the chief steward involved recurrence
relations. We now derive a formula which yields a solution of these recurrence
relations; one which enables us to compute directly the number of acceptable
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ways of seating the feuding knights. Our derivation makes use of the principle of
inclusion and exclusion. Let «; denote the event when the hostile knights in the
kth pair sit side by side. We compute N(q, ,..., og), that is, the number of seating
arrangements in which there are & pairs of hostile neighbors. The first pair can be
seated at the table in 4n ways (the first knight can be seated in 2z ways, the second
can be seated next to him, on his right, say, and then the two knights
can exchange seats). There are 2n — 2 seats left for the remaining knights who
are to be seated so that the feuding knights in the second, third, ..., kth pair are
seated side by side. We think of each of these & — 1 pairs of knights as a single
“object.” These & — 1 pairs of knights and the 2n — 2% remaining knights can be
permuted in (22 — & — 1)! ways. If we choose one of these permutations and
seat the knights in the free seats at the table in the order determined by the
permutation, then we end up with a seating arrangement in which the feuding
knights of each of the selected £ — 1 pairs sit side by side. This remains the case
even if some of the hostile neighbors decide to exchange seats. Such exchanges
can be carried out in 2*¥~! ways. It follows that the number of seating arrange-
ments in question is 4n - 2¥-1(2n — k& — 1)!. Equivalently,

N(oy - o) = 2 n(2n — k — 1L,

Ultimately, we are interested in the number N(«; - o) of seating arrange-
ments with no hostile neighbors. Since k pairs can be selected in CF ways, the
the principle of inclusion and exclusion yields the relation

Ay = NG -+ o)
= (2n)! — C12*n(2n — 2)! 4 C22°%x(2n — 3)! —
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Combinatorics and Series

The method of recurrence relations enables us to solve many combinatorial
problems. However, in many cases the necessary recurrence relations are
difficult to set up and even more difficult to solve. It is frequently possible to get
around these difficulties by using generating functions. Since generating functions
are connected with infinite series, we will find it necessary to familiarize ourselves
with such series.

Division of Polynomials

The reader is doubtless familiar with division of polynomials. Given two
polynomials f (x) and ¢(x) there always exist polynomials g(x) (quotient) and r(x)
(remainder) such that f(x) = ¢(x) g(x) + 7(x) and such that either #(x) = 0 or
the degree of 7(x) is less than the degree of ¢(x). The polynomial f (x) is called the
dividend and ¢(x) is called the divisor. If we insist on a zero remainder, then we
must admit as quotients infinite power series. Consider, for example, division of 1
by 1 — x. We have

1 1 —x
F1+4+x 1+ o4 a2 4 -
x
Fxf x%
x2
F ot a®
x3 oer

141
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It is clear that this division never ends (much as in the process of obtaining
the decimal expansion of the number }). Using induction, it is easy to prove that
all the coefficients of the quotient are equal to 1. It follows that the quotient is the
infinite series

In general, if f(x) and ¢(x) are two polynomials,
F@) = ag+ 4 age,  plx) = by + o+ by,

and the constant term b, of the polynomial ¢(x) is different from zero, then
division of f(x) by g(x) yields an infinite series

co+clx—|—"'—|—ckx’°—|—'°'. (1)

For example, taking f(x) = 6x® — 2x% + x + 3 and ¢(x) = %2 — x + 1, we
obtain

34+ x —2x% | 643 1 —x + «2
F 3 + 3x F 342 3 4x — x% + &8 L 2x8 | -

4x — 5x% 4 6«3
4 4x + 4x% F 4x°
_x2_|_2x3
+x® Fad £t
x3 4 xt

T2t Fa°

2xt — x5

This situation arises whenever by = 0 and 7(x) = 0. Only when ¢(x) divides f (x)
(that is, only when 7(x) = 0) does the series (1) terminate, and the quotient is a
polynomial.

Algebraic Fractions and Power Series

Division of a polynomial f(x) by a polynomial ¢(x) yielded a power series.
There arises the question of the connection between this power series and the
fraction f(x)/p(x), that is, the question of the meaning to be assigned to the
expression

f(x)
P(x)

— Gy G+ o gt e 2)
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For example, consider the expansion

We do not write an equality sign, for we have not yet assigned any meaning to a
sum with infinitely many summands. In an effort to clear up this issue we
substitute different numerical values for x on both sides of relation (3). We start
with the value x = 1/10. Then the left-hand side of (3) has the value 10/9 and the
right-hand side reduces to the infinite series of numbers

14+ 0.1 40.01 4 -+ 4 0.000 --- 01 + ---.

Since we cannot add infinitely many summands, we take first one, then two, then
three, and so on, summands. The resulting sums are

1, L1, 111, .., L.I111---1,
n Ones

It is clear that as #z increases these sums come ever closer to 10/9 = 1.11...,
that is, the value of 1/(1 — «x) for x = 1/10.

A similar situation arises when we replace x in (3) with the number 1/2. Then
the left-hand side of (3) takes on the value 2, and the right-hand side reduces
to the infinite series of numbers 1 + 1/2 4 1/4 + 1/8 + -+ + 1/27 4 -,
Addition of one, two, three, four,..., summands in this series yields the numbers
1,13, 13, 13, ..., 2 — 1/2*. Itis clear that as n increases these numbers tend to
the number 2.

A different state of affairs arises when we put x = 4. Then the left-hand side
of (3) takes on the value —1/3, and the right-hand side reduces to the infinite
series of numbers 1 4+ 4 4 42 + --- 4+ 47 + ---, Successive addition of the
terms of this series yields the numbers 1, 5, 21, 85,.... It is clear that these
numbers increase indefinitely and so do not approach the number —1/3.

We are obviously confronted with two different cases. To distinguish between
these cases we introduce the notion of convergence and divergence of a series of
numbers. Consider the infinite series of numbers

a1+a2+"'+an+"'- (4)

We say that this series converges to the number b if the difference
b—(a+a+ -+ a)

tends to zero with increasing n. In other words, for every e > 0, we can find an
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index N so large that the sum a; 4 - + 4, with N or more summands deviates
from b by less than e:

| b — (a, + - + a,)| <k, if n>=N.

If this is the case, then we say that the number & is the sum of the infinite series
a, + " + a, + -+ and we write

b:a1++an_|_

If the series (4) does not converge to any number b, then we say that this series
diverges.
Our computations show that

%’ = 14014000 + 400001 £ -,

1 1 1
2=1+§+2+“'+F+"’,

and that the series 1 + 4 4+ 16 4 -*- 4+ 4" + --- diverges.
A more thorough investigation shows that the series 1 4+ x + -+~ + x® 4 -
converges to 1/(1 — x) for | x| <1 and diverges for | x| = 1.

To prove this assertion if suffices to note that

1 — xnt1

1+x++xn=

1 —x

and that as # — oo the term x"*! tends to zero or to infinity according as |x| < 1 or
|| > 1. For x = 41, we obtain the divergent series 1 + 14 -+ + 1 + --- and
1_1 _|_..._|_ l_l _l_.-._

Thus for| x| < 1,

1 n
1—_—;:1+x—|—"'—{—x—|— . (5)

We note that Eq. (5) is the high school formula for the sum of a decreasing
geometric progression,
By now we have assigned meaning to the equality

_1__:1+x_|_..-+x’n+..-.

1 —x

This equality states that for | ¥ | < 1 the series on the right-hand side converges
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to 1/(1 — x). One frequently says that for | x | << 1 the function 1/(1 — «) can be
expanded in a power series 1 + & 4 -+ + &% + -

Quite generally, if division of a polynomial f(x) by a polynomial g(x) yields
a power series

Cﬂ+clx+ Tt +cnxn+ Y (6)

then for sufficiently small | x | the series (6) converges to f(x)/g(x).

The size of the domain of convergence depends on the roots of the denominator, that
is, on the numbers for which the denominator takes on the value zero. Specifically, if the
numbers in question are %y ,..., X; and r is the least of the numbers | %, |y..., | %% |, then
the series converges for all x with | x | < r. For example, the function 1 — x takes on
the value zero for x = 1, and so the power series expansion of 1/(1 — x) is valid only for
| x| << 1. Again, the function x* — 7x + 10 vanishes for »;, = 2, ¥, = 5, and so the
power series expansion of (x — 1)/(x® — 7x + 10) converges for | x| < 2.

We recall the stipulation that the constant term in the denominator ¢(x) of f(x)/e(x)
must be different from zero. Since ¢(0) = b, , this amounts to saying that zero is not a root
of the denominator of the algebraic fraction f(x)/e(x).

In other words, there 1s always an 7 such that for | x | << r we have the equality

f(x)
P(x)

= ¢p+ 1% + o+ Cpx™ + o (7)

Algebraic fractions are not the only functions which can be expanded in power series.
For example, in analysis one proves that for all x we have

. x x
sin & = x—g-l-;—s (8)
x3® x4
cosx=l—E+E— ) (9)
x® X3
e=1+x+2—!—l—§—l—-“. (10)

Of greatest interest to us is the expansion (10). Putting x = 1, we obtain the expansion

11
e=1+1+3++. (11)

By adding sufficiently many terms in the series (11) we can find the value of e with
arbitrary accuracy. A rather accurate value of e is

2.7182818289045... .
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We note one more important result:

A function f (x) cannot have two different power series expansions. In other words,
if

fx) = ay + agx + -+ + azxt +
and

F(®) = by + by 4 o+ - B 4+,
then

Operations on Power Series

Next we consider operations on power series. Let f(x) and ¢(x) admit
expansions in power series:

f(x) =ag+ ayx + -+ + ax™ + -, (12)
and
p(x) = by + byx 4 - + bx™ 4 - (13)
Then
f(®) + @(x) = (g + arx + -+ + 22" + )
+ (Bo + byx + - + bpa™ 4 ).

It turns out that we may rearrange and group terms with the same power of x
appearing on the right-hand side of the last equality (this is far from obvious;
after all, we are dealing with infinite sums and rearrangement of terms may
affect the value of an infinite sum). Then we obtain the equality

F(®) + () = (@0 + bo) + (a1 + b)) x + -+ + (an + bp) " + . (14)

The power series in (14) is called the sum of the power series in (12) and (13).

Now we investigate the power series expansion of a product of two functions
f(%) and ¢(x). We have

f®) px) = (a0 + aix + =+ + an&™ + )bo + by¥ + -+ + bpa” + ). (15)

It turns our that, just as in the case of polynomials, the series on the right-hand
side of (15) may be multiplied termwise (we omit the proof of this assertion).
Now we find the series resulting from termwise multiplication. The constant
term of this series is agb, . There are two terms containing x; one is the result of



Operations on Power Series 147

multiplying @, by b,x, and the other is the result of multiplying 5, by a,x.
Addition of these two terms yields

agbx + abgx = (agh, + a,b,) .
Addition of the terms containing x? yields
agbex?® + a1bx% + azbx? = (aghy + aby + azhy) x2.
Quite generally, the coefficient of x™ is

agb, + albn—l + ot ahp e+ anbo .
It follows that

J (%) p(x) = aghy + (@b + a1bg) & + +++ + (aphn + - + a,bg) 2 + -~
(16)
The series on the right-hand side of Eq. (16) is called the product of the series
(12) and (13).
In particular, the square of the series (12) is the series

f(x) = ag + 2a0a1x + (a7 + 2a0a,)x" + 2agas + aran)x® + -~ (17)

Next we consider division of power series, Suppose that the constant term in
the series (13) is different from zero. We show that in that case there exists a
power series

co+ox+ 4 et ey (18)
such that
(bo + byx + =+ bpx™ 4 - )eg + ¥ + A X" - o)
= qay+ ax + = + ax" + -, (19)

For proof, we multiply the series on the left-hand side of Eq. (19). The result
is the series

boco + (boty + byco)x + =+ + (bocn + 0 F bpco)x™ + -

For this series to coincide with the series (12), it is necessary and sufficient that
the following equalities hold:

-------------

nnnnnnnnnnnnn
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Thhis is an infinite system of equations for the coefhicients ¢, , ¢, ,..., ¢, ,... . From
the first of these equations, we obtain ¢, = a4/b, . Substitution of this value of ¢,
in the second equation yields the equation

b,a,
by '

by, = a; —

from which we find ¢, = (a6, — b,a,)/b5 . Quite generally, having computed
the values of ¢, ,..., ¢,_; , we obtain the following equation for ¢, :

boc, = a, — bycn_y — - — bueq .

In view of the assumption b, % 0, this equation can be solved for ¢, .

We have proved the existence of the series (18) satisfying relation (19). The
series (18) is called the quotient of the series (12) and (13), in this order. It can be
shown that this series coincides with the power series expansion of the function
£ (x)/@(x). It follows that power series can be added, multiplied, and divided (the
latter if the constant term of the divisor is not zero). Also, the results of these
operations correspond to the results of the corresponding operations applied to
the functions defined by the various series.

We note that we can now give a new interpretation to the expansion

ay + -+ a,x®
bO + + bmxm

=G o ot (20)

We can say that the power series ¢, + ¢;x + -+ + ¢, x* | -+ is the result of
dividing the finite power series a, + '** + a,x® by the finite power series
by + - + bpx™. In other words, Eq. (19) means that

(b0+ ‘l‘bmxm)(co + €, + + ckx’” + ) = a, + _|_ anx“, (21)

where the product on the left-hand side of (21) is defined by means of a formula
analogous to (16).

Application of Power Series to Proofs of Identities

Power series can be used to prove many identities. The idea here is to expand
a function in two different ways in a power series. Since a function has exactly one
power series expansion, the corresponding coefficients of the two expansions
must be equal. This yields the required identities.
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For example, consider the familiar expansion

Squaring both sides, we obtain the equality

1

Replacing x by —x in (22), we see that

1

s =1—2x 4 3% — - + (—1)"(n + 1)a™ 4 -~ (229
(1 + %)

Multiplying the expansions (22) and (22'), we obtain

1 1

1—xF( + 2 1+[1(=2)+2 - 1)x+[1-3+2(—2)+31]x% 4 -

+ [I(=1)(n + 1) + 21y -
+ (=) + 1) - 1Ja™ + - (23)
It is clear that the coefficient of each odd power of x is zero (these coefficients are

sums in which each summand appears twice: once with a plus sign and once with
a minus sign). The coefficient of x?" is

I2n+1)—2-2n4+32n—1)— -+ 22+ 1).
Now, the function 1/(1 — %)% (1 4+ x)* can be expanded in a power series
differently. We have
1 1

(1 —x)%(1 + 22 (1 — %22’

If we replace ¥ by % in (22), then we obtain the following expansion of the
function 1j(1 — x2)%:

1

m=1+2x2+3x4+'-'—|—(n—|—l)x2“—|—--'. (24)

In view of the uniqueness of the power series expansion of a function, the
coefficient of ¥2 in the expansion (23) must be equal to the coefficient of x%* in
the expansion (24). This implies the identity

(2 +1)—2-2m+32n—1)— +2u+1)1=n+1
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Generating Functions

We are now in a position to introduce the main topic of this chapter, namely,
the concept of a generating function. Let a4, 4, ,..., 4, ,... be a given sequence of
numbers. We form the power series

g+ aye + o a4

In this series converges in some domain to a function f(x), then this function is
called a generating function for the sequence a4, 4, , ..., a, , ... . For example, the

formula

1 —x
implies that the function 1/(1 — x) is a generating function for the sequence
1,1, 1,..., 1, ... Again, Formula (22) shows that the function 1/(1 — x)? is a
generating function for the sequence 1, 2, 3,4, ..., n, ... .

We are interested in generating functions for sequences a,, a;, ..., @, , .--
which are connected in some way with recurrence relations. Using generating
functions it is possible to obtain many properties of such sequences. Another
topic which we explore in the sequel is the connection between generating
functions and solutions of recurrence relations.

The Binomial Expansion

We now obtain a generating function for the finite sequence of numbers
ce,Cr,..,Cr.
We know from elementary algebra that

(a + % = a® + 2ax 4 x?
and that
(a + x)® = a® + 3a®%k + 3ax? + x5

These equalities are special cases of a more general formula for the expansion of
(a + x)*. We write (@ + x)" as

(a + x)» = (a + x)(a + %) - (a + x).

n times

(25)

We remove the brackets on the right-hand side of (25) but write out the factors
in each summand in the order in which they occur. To get a clue as to the form of
the resulting sum we observe that

(a + x)® = (a + x)a + x) = aa + ax + xa + xx, (26)
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and that

(a + x)® = (a + x)(a + x)a + x)
= aaa + aax + axa + axx + xaa + xax + xxa + xxx. (27)

It is clear that the sum in (26) consists of all 2-letter arrangements with
repetitions of the letters ¥ and 4, and that the sum in (27) consists of all 3-letter
arrangements with repetitions of the letters x and 4. The same type of statement
holds in the general case: after removing brackets in (25) (and prior to any
reductions) we obtain a sum consisting of all n-letter arrangements with repetitions
of the letters x and a. Now we count the number of summands which contain &
letters x, and thus #n — k letters a. Each of these summands is a permutation
with repetitions of % letters x and n — & letters 4. By Formula (5) in Chap. II,
the number of such permutations is

n!

—_ — k=—__
Plln— k)= C = o

It follows that after reduction the coefficient of x* is

n!

.
=T =R

This proves that

(a + 2)" = Cla" 4 Cra" % 4 - + CEa™ ¥ + -+ + CTa™. (28)

Equation (28) is commonly referred to as the binomial expansion. Putting
a = 1 in this equality, we obtain the relation

(142)"=Cl+ Clx + -+ + Chlx* 4 --- + C2x™ (29)

This relation shows that the function (1 + x)* is a generating function for the
numbers C¥ , k =0, 1, ..., n.

This generating function enables us to prove with relative ease many properties
of the numbers CF¥ obtained earlier by means of rather intricate arguments.

We prove first that

Crn=Cn + Ci (30)

For this it suffices to multiply both sides of (29) by 1 4 x. The result is the
equality

(1 + 2" = (Cp 4 Cax + - 4 Cox® 4 -+ 4+ Cpa™)(1 + #).
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Now we compute the coefficients of x* in the polynomials on both sides of our
equality. By the binomial expansion [see (28) with n + 1 in place of 7] the
coefficient of x* on the left-hand side is CL,, . If we expand the product on the
right-hand side, then x* turns up twice: once as a result of multiplication of
Ckx* by 1, and once as a result of multiplication of CE~'x*! by x. Hence the
coefficient of x* on the right-hand side is C*¥ 4 C**1. Since our two polynomials
are equal, it follows that C¥ , = C¥  C*1,

In proving this relation on p. 35 we made use of combinatorial arguments.
Another relation proved (on p. 35) by means of relatively complicated combina-
torial arguments is the relation

P=C+Ct+Ct o+ G (31)

With Formula (29) at our disposal, all we need do to prove this relation is to put
x = 1in (29).
If we put x = —1 in (29), then we obtain the relation

0=Ch—Cp+ Ch—Ch+ -+ + (=1)Cr + -+ + (—1)"Cy.

This relation states that the sum of the CE with k even is equal to the sum of the C*
with k odd:

G+HG+C+ -+ G+ =C+ Cot o + G e (32)

Both sums in (32) are finite. The sum on the left-hand side terminates when
2m > n, and the sum on the right-hand side terminates when 2m 4 1 > n.

If we put ¥ = i, n = 4m in (29), then we obtain a rather interesting result: A
simple computation shows that (1 + 7)* = —4, and so, (1 + )" = (—4)" It
follows that

(—4)" = Cin + Cimi + Cii® + Cipt® + Cit® + -+ + Cii*™
= Cin + Cimi — Cin — Cini + Cim + -+ + Cam -
Separating real and imaginary parts, we obtain the relations
Cimn — Cam + Cin — =+ — Cim + =0, (33)
Cin — Cim + Cin + -+ + Cim = (—4)™ (34)

We leave it to the reader to see what relations are obtained for n = 4m + 1,
4m + 2, dm + 3.
The same generating function yields an easy proof of the relation

Cosm = CaCp + oGl + - + CiCTF 4+ + CIC™ (39)
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(here for s — k < 0 we put C57% = 0, so that, actually, k varies from 0 to the
smaller of the numbers s, #). For proof, we multiply the left- and right-hand sides
of the expansions

(1 +2)" = Ch + Cox + -+ 4 Cra* 4 - 4 Crae™,
and
I+ =Cp+ Cux + - + Coa® 4 - + C™,
and consider the resulting equality
(1 + &)™™= [Ch 4 Cox + - + Crx® 4 -+ 4 Coa”]
X [Cm + Cux + - + Cx® + -+ 4 Coa™).

To obtain (35) we expand both sides of this equality and equate the coefficients
of x% on both sides of the resulting equality. A special case of (35) is

Cin = (Co)* + (Ca)* + = 4 (CR)* (35)
(we recall that C* = C?%),

n

The Multinomial Expansion

The binomial expansion can be used to obtain expansions of rather complex
expressions. Consider, for example, the following expansion of (x 4+ y + 2)%:

(x+y+20=[>x+y + =
= (x + )" + Ci(x + 3’z
+ Ci(x + 3)%2® + C¥x + y)® + Ciz'.

Now we again apply the binomial expansion to (x + )4, (x + ¥)3, (x + ¥)? and
obtain, ultimately, the expansion

(v +y+ 2t = £+ 2 | Ay | At 4y
+ 493z + 4az® + 4yz® 4 6x%y? | 6x232
+ 69222 + 12x%yz 4 12xy%2 + 12xy2? (36)

This stepwise procedure is rather awkward. It does not give us the means of
computing directly the coefficient of, say, ¥2y2® in the expansion of (x + y + 2)°.
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It is therefore desirable to obtain an analog of the binomial expansion for the
expression

(g + %2 + 4 %)™ (37)

It is not difficult to guess the form of such a formula. When we proved the
binomial expansion we saw that in the expansion of (a + x) the coefficient of
xka"—* was P(k,n — k). It is reasonable to guess that in the expansion of
(2, + %5 + -+ + x,)" the coefficient of xjxfz --- xfm is P(k, , ko ..., k). We
now show this to be the case.

We write (x; + &, + *-* + x,,)" as a product of n factors and remove brackets.
When doing this we write the factors in each term in the order in which they
appear. It is clear that the terms of our expansion yield all the #-arrangements
with repetitions of the letters x,, ..., ¥, . Similar terms are terms in which
corresponding letters enter the same number of times. It follows that the
coefficient of x¥ixz --- xEm in our expansion coincides with the number of
n-arrangements with repetitions of %, replicas of the letter x, , &, replicas of the
letter x, , ..., &, replicas of the letter x,, . Clearly, this number is the number
P(ky, kg, ..., k) of n-permutations with repetitions of %, replicas of x,, 4,
replicas of x, , ..., k,, replicas of x,, ; here k;, + &k, + - + k,, = n. This proves
the multinomial expansion formula

(2, + o0, + -+ ) =Y Pk, ky oy kY212 00 fm, (38)

where we sum over all ordered partitions &y + k, + - + &,, of n into m
nonnegative summands. We recall that

By + ks + o+ k)
P(kl ’ k2 ,...,km) - ( : kllzkz! km! ) '

(39)

It is clear that if the numbers s, , 5, , ..., 5, are a permutation of the numbers
Ry ey Ry, then P(sy , ..., 5,) = P(ky, ..., ky). That is why in the example (36)
the coefficients, say, of a®yz and xyz?® are the same. This remark simplifies the
computation of the terms of the expansion (37): we find the coefficients corre-
sponding to the partitions n = %, + ky + - + k, , with k) =k, = - >k, ,
and then permute the exponents in all possible ways.

For example, let us compute the expansion of (x 4 y 4 2)°. If we disregard the
order of the summmands, then the number 5 admits the following five partitions
into 3 summands each:

5=54+0+0, —44140, 5=3+2+0,
5=34+141, S5=2+241
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Now, P(50,0)=1, P@4,1,0)=5 P@3,20) =10, P3,1,1) =20,
P(2,2,1) = 30. Therefore,

(x + v+ 2)° = &% + 35 4 2% + Sxly + Swyt + Sxiz  Sx2t
+ Sytz + Syzt + 10x%y? 4 10x%® + 10x322
+ 10x%22% + 10y322 + 10y22% 4 20x%y2 + 20xy°2
4+ 20xyz® + 30x%2z 4 30x2y2® + 30xy%22,

Formula (38) enables us to prove certain properties of the number
P(ky , kg ..., kp). For example, if we put in this formulax;, =%, = --» =%, =1,
then we see that

m® =Y PRy s, Run)s (40)

where the sum is taken over all ordered partitions of the number 7 into m
nonnegative summands, n = &, + Ry + =+ + &y, .

To obtain another property of these numbers, we multiply both sides of (38)
by %, + *** + %, , expand the left-hand side by the multinomial expansion (38),
remove brackets on the right-hand side, and equate corresponding coefficients.
The result is the recurrence relation

Py, By yoy ) = Plhy — 1, kg oy k) + PRy By — 1y By) oo
4 Plhy kg oy by — 1), (41)

One more property of our numbers is obtained by multiplying corresponding
sides of the expansions

(2, + %, + - +x ) =Y Pk, ky ..., k, Y1l oo i

and

(o, + 2, + 42 ) =3 P, L, Jatx xlm

and equating the coefficients of afixg? --- x7» on both sides of the resulting

equality. In this way we obtain the identity

P(ry,torrtm) = Y Plhy, kg yo kn)PUy s Ly yenny L) (42)

kptlp=r,

Here we sum over all arrangements of nonnegative integers k,, ks ,..., By ;
L,l,. I, such that A +ky,+ -+ k,=mn L+ 1L+ +1,=s and
Ri+li=r, ke +1ly=ry,.,ky+ 1, =r,. We leave the details of this
derivation to the reader,
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Formulas (40)-(42) could, of course, be derived without the use of the
generating function (38). But then it would be necessary to use n-dimensional
analogs of the arguments used to derive Formula (10) on p. 105. Using
a generating function we obtain these identities in a practically mechanical way by
carrying out some relatively simple algebraic manipulations.

The Binomial Series Expansion

Newton is usually credited with the discovery of the binomial expansion. This
is historically incorrect, for the expansion formula for (a + x)* for positive
integral » was well known to Nasir Eddin, Omar Khayyam, and others in the
Near East, and, long before Newton, to Blaise Pascal in Western Europe. What
Newton did was to generalize the expansion of (x + &) to the case of nonintegral
exponents. Specifically, Newton was able to prove that if a ¢s a positive number and
| x| < a, then for any real number o we have the equality

(x + a)a = q°* + aa®1x + a(olt _21) a*2y2 _|_
PR e @

In general, the expansion (43) yields an infinite series. If « is a natural number 7,
then the coefficients of x*, x?+1 ..., in (43) contain the factor « — n = 0, and
(43) reduces to the binomial expansion (28).

We prove Formula (43) for « = —n, a negative integer, and do not attempt to
prove it for arbitrary a.

We wish to show that

(¢ + ) = @ — nanty  ZEED) e
e YD) iy
+ (-1 2 11) :"2(.'?.: FD) ot e (44)

If we bear in mind the fact that

n(n 4+ 1)+ (n+ k — 1)
1 -2k ’

ke
Cn+k—1 =
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then we can replace (44) with
1+ =1-a )+l
x x

(N (B 4 @)

a

Instead of proving (44’) we find it convenient to replace x/a in (44") with —¢ and
to prove the resulting equality

(1—8" =1+ Cit + Cipat® + =+ + Crypat® + . (45)

Our proof is by induction on 7. Forn = 1, we have C*_, | = C¥ =1, and so
(45) reduces to

1
1 —t

=1+t 42+ otk (46)

which is the well-known formula for the sum of an infinite decreasing geometric
progression (we recall that | ¢| = | x/a| < 1).

It remains to show that the validity of (45) for any » implies its validity for
n + 1, that is, the validity of

(1 — t)#nﬂl =1+ C}Hlt + C:+2t2 + -+ Cv’zc+ktk + e (47)
Multiplication of (47) by 1 — ¢ yields
1—8"=[+ C;+1t + C'A§+2t + e quﬁcﬂtk—l + C,’f+ktk + )1 —2).

It is easy to see that the coefficient of #* on the right-hand sideis C},, — Ci1 .
Since

k =1 ok
Cn+k - Cfn+k—1 - Cn+k—1 ’

(Formula (11) on p. 35), our equality reduces to (45). Just as multiplication of
(47) by 1 — ¢ yields (45), so conversely, multiplication of (45) by 1/(1 — ¢) must
yield (47). Having proved the validity of (45) for » = 1, and the fact that
whenever (45) is valid for some natural number 7 it is also valid forn + 1, we
may conclude that (45) is valid for all natural numbers =.

To obtain (47) directly from (45), we can multiply corresponding sides of (45) and (46).
The result is the equality

(1 _t).‘"-l =(1+ Cat + C:+1t2 4 e C:+k_1tk + )
X (1414124 - 4tk 4 =)
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If we remove brackets on the right-hand side and make use of the identity

C‘r)a—l + C:a + C:+1 + -+ C:+k—1 = C::+k
(see Formula (15) p. 36), then we obtain (47).

We have proved (45) for | | << 1. Substitution of the value ¢ = —1 in (45)
leads to the “‘remarkable” formula

1
s =1=Cat Cra— Coa + - + (1) Crpga + -+ (49)

on

which is nonsense; if the series of integers on the right-hand side tended to any
number at all, this number would have to be an integer and not the fraction 1/2".

In the 18th century, when the theory of infinite series was not yet fully
understood, such mistakes were made even by first rate mathematicians. It took
decades of intensive investigations to clarify the concept of the sum of an infinite
series, of its existence and nonexistence. It should be noted that at the end of the
19th century the concept of the sum of an infinite series was significantly
generalized; in fact, there are definitions of summability in which Formula (48)
holds. However, all these questions are beyond the scope of this book.

Comparison of the expansions

(1407 =1—Clt | Chuft — o (—)'Chpuat® + - (49)
and
(1 +8)" =14 Cat + Cat>+ - + Cit* + - 4+ 1" (50)
indicates the appropriateness of the definition
Cly = (—1)*Crran

introduced on p. 96 (Formula (2)). Again, the absence of negative powers of ¢ in
(49) and (50) suggests that it is reasonable to put for negative k, C* = 0.
Similar considerations support the definition C* = 0, for 0 < n < k.

Computation of Square Roots

While we proved the binomial expansion (Formula (43)) for integral exponents
only, this formula, as already mentioned, is also valid for fractional (as well as
irrational) values of the exponent. We consider two expansions, for » = 1/2 and
n = —1/2, and take their validity for granted.



Computation of Square Roots 159

For n = 1/2, the binomial expansion formula yields the equality

1 33 — 1) G —1)E —2)
1/2 — - EAY LT . 2 8 1 ...
F—D-F—-%k+1
+ %(‘f i . 2(:%“k + ) Xk N (51)
which can be rewritten in the form
1 1 1-3
1/2 — Lo 2 3 __
I =1dse -3t 76"
13- (2k —3)
1)1 k| ...
+(=1) D g
Similarly, for n = —1/2 we obtain
1 1-3
-1/2 — 1 _ — 2 __ ...
(1 4 =) 1 5% + 2 *
1-3--(2k—1
+ (=1 R 4( & ) + o (32)
By making use of the identity
1-3--2k—1) _ (2! _ 1 C*
2-4--2k 22k(k[)2 22k 2k
Wwe can write our two expansions as
(142 = 1 — —p Che + - Ch* — -+
Y
+ (—2% Cox® + - (53)
and
(1 +x)2=1 —|—lx ! Cyx®
2 228 ¢
1 23 (=" 1 &
+ 3. % Cox® — =+ ""Wczk—ﬂx + - (54)

These expansions are valid for | # | < 1. They can be used to obtain square roots
of numbers with arbitrary accuracy. For example,

V30 = V25 + 5 =541+ 0.2 = 5(1 + 0.2)1/2
— 1 oa—_1 g2
=5[14+5-02—5702

1-3
T3 46

L0.2% — ] — 5.4775 -,



160 VII. Combinatorics and Series

What interests us more than the application of these formulas to the extraction
of square roots is their application to the derivation of relations connecting the
binomial coefficients. T'o obtain one such relation we square (53). The rule for
multiplication of power series implies that the coefficient of x* on the right-hand
side of the resulting equality is

L (Ch + CICk, + CICkA + + + Ch

On the left-hand side we obtain

1
1 4+

(1 + 572
We know that

1
1+«

=1—2x4x2— - 4 (—1)kx* 4

Equating the coefficients of x* in the two expansions, we obtain the identity
2 + CiCaite + CiCils + - + Ci = 2% (35)
Similarly, (54) yields the identity

Ch2% C3CE>s n CciCht by Cots  _ Ci (56)
1-(k—1) 2k—2) 3(k—3) k—1)-1 k

which holds for & = 2.
Multiplication of corresponding sides of the expansions (53) and (54) yields

1
223

Ch® —

1 1
1:[1+—x Ci® + 3

—1 —1 _
+ l(z g Citee 4+ |[1 — 5 G

. 5

+ 7 Cix® + - +
If we remove brackets on the right-hand side of this equality, then we obtain a
power series all of whose coefficients (other than the constant term) are zero. This
implies the identity

. . _ 1
Cile + = CIC;‘,C_EI + 3 CzC;ckEe + - -|— Chle = 3 Cy., (58)

which holds for & > 1.
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Finally we note that
(1 4+ x)12(1 + 2)1 = (1 4 «x)-1/2

Replacing the factors by appropriate power series, we have

1 1 —1)1 L
(14 % =g OB 4 e Gl )

X (1 —x+x%2—x% 4 o+ (—1)xF + --2)

1 1 l

Removing brackets and equating the coefficients of x* on both sides of this
equality, we obtain the identity

1
=5z G-

b
3 .24

1 1
TR . omez Cily = C (59)

22k -1

Ci —

Generating Functions and Recurrence Relations

We have already mentioned the existence of a close connection between
generating functions and recurrence relations. Our familiarity with division of
polynomials permits us to consider this issue in some detail.

Let
fx)y=ay+ ax + - + ax"

and
p(x) = by + byx + - + bpa™

be two polynomials and let b, 7= 0. We also assume that 7 < m,
that is, that the algebraic fraction f(x)/p(x) is proper (otherwise we could always
write f(x)/ep(x) as the sum of a polynomial and a proper algebraic fraction).

We know that if

f(x)
P(x)

= ¢y + e + o+ ot + o (60)
then
ay + ax + -+ apx® = (by + by + 0+ b x™)(cq + g -+ x4 ),

We remove brackets on the right-hand side of this equality and equate the
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coefficients of equal powers of x on both sides. As a result we obtain two sets of
relations. The first m relations are

bty = ay,
bo¢y + byey = ay
bycy + biey 4 bycy = a,, (61)

(if n << m — 1, then we put a,,, = *** 4+ a,,_; = 0). The remaining relations
are of the form

bocm_'_]c + blcm_‘_]c_l —|— i + bmck - 0, k - 0, 1,.-. (62)

(f(x) contains no terms with x™, x™1, and so on). Thus the coefficients
Co» €1 5o Cp 5o Of the series (60) satisfy the recurrence relation (62), The
coefficients of this recurrence relation depend only on the denominator of the
algebraic fraction. The coefficients of the numerator of the fraction enter
relations (61) from which we compute the first m terms ¢, , ¢, ,..., ¢,,_; of the
recurrent sequence.

Conversely, given the recurrence relation (62) and the terms ¢, , ¢; ,..., €y We
can use Formulas (61) to compute a4, ,..., a,,_; . Then the algebraic fraction

f(x) _ a, -+ a,x S + am_lxmﬂ
() by 4 byx 4 -+ 4 bpam™

(63)

is a generating function for the sequence of numbers ¢, , ¢, ,..., ¢, ,... .

At first sight it would seem that little is gained from replacing the recurrence
relation by a generating function. After all, division of the numerator by the
denominator brings us right back to the recurrence relation (62). But what counts
is the fact that we can apply to the fraction (63) certain algebraic transformations
which simplify the problem of finding the numbers ¢;, .

Decomposition into Elementary Fractions (Partial Fraction Decomposition)

We show how to solve recurrence relations by applying algebraic transforma-
tions to the corresponding generating functions.

Assume that we have managed to write the denominator of the fraction (63)
as a product of linear factors

PE) = bl — o) (% — o).
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(This requires the solution of the characteristic equation by 4+ - + b,,x™ = 0 of
relation (62).) Then it is clear that the fraction (63) is the sum of elementary
algebraic fractions of the form

All A12 Alr

(% — o) (x — o)’ o —ay
Akl Akz Aks

G-y’ E—a i’ 7 F—

in other words,
dg + o+ ap @™t An Ay,
bl — ) —o) | G—ay | E—aq T
Akl Aks
T (x — o)® o X — ay (64)

To find the coefficients A, ,..., 4;; we must multiply both sides of (64) by the
denominator (¥ — a,)" *** (¥ — «;)*, remove brackets, and equate coeflicients of
the same power of x. The required coefficients can be computed from the
resulting system of equations.

Sometimes we can get by without solving a system of equations. For example,
suppose we wish to obtain the decomposition into elementary fractions of

x — 2x% 4 6x + 1
xt — 5x2 | 4

Since

B S 4= (2 — )2 — 4) = (xr — 1) + D(x — 2x + 2),
the required decomposition must be of the form

B2 6xt1 A B c D
G e F)r—2x12) x—1 "zl x=2 " x52

Multiplication by the common denominator yields the relation

o3 —2x% 4 6x + 1 = A(x + 1)(x — 2)(x + 2) + B(x — 1)(x — 2)(x + 2)
+ O — 1)(x + 1)(® + 2) + Dl — 1)(® + 1)(x — 2).

This relation is to be an identity in x. For x = 1, all the terms of the right-hand
side beginning with the second term vanish, and we have —6A4 = 6, so that
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A = —1. Similarly, putting x = —1,x = 2,x = —2, we find that B = —4/3,
= 13/12, D = 9/4. It follows that
x8—2% 46241 1 4 13 9

A _Serd . x—1 3+ =2 " dxt2)
(65)

Fractions of the form A4/(x — «)" are expanded by means of the binomial
series formula. For example,

12(713_27=—5(1—§)4= —pl it ]

Applying this expansion to the various fractions in (65), we obtain

2% — 224 6x +1 N
A5+ 4 =1+x+x24 - +a*+-)

_g(l —x + x2 — ... + (_l)nx'n + ...)

R RN
+§(1—§+§—:—'"+(_;#+"-)-

Grouping terms involving the same power of x, we see that the coefficient of x” is

4 13 9(—1)"

=130 =+ 32

To sum up: The problem of expanding an algebraic fraction into a power
series is equivalent to the problem of solving a certain linear recurrence relation
with prescribed initial conditions. Hence one way of solving a linear recurrence
relation with constant coefficients is to decompose the appropriate algebraic
fraction into elementary fractions and then expand the elementary fractions into
power series by the binomial series formula.

Specifically, given the recurrence relation (62) and the initial values ¢, ,..., ¢,,_; ,
we use (61) to compute 4 ,..., d,,_; . T'hese numbers determine the numerator of
the fraction

f(x)
p(x)

= ¢ + X + -+ ckx" + .-

whose denominator is by + - + b,,x™
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Next we decompose the fraction f(x)/g(x) into elementary fractions which we
expand in power series by the binomial series formula. The element ¢; of the
solution of our recurrence relation is the coefficient of x* in the power series
expansion of f (x)/p(x).

For example, consider the recurrence relation

Cryz — Iy + 66, = 0, (66)
with initial conditions ¢; =1, ¢, = —2. Here b, =1, b, = —5, b, = 6.
Formula (61) implies that
aq = bycy = 1, a; = byey + biey = —17.

It follows that the numerator of the fraction

f(x)
P(x)

= eyt e+ o gt

is 1 — 7x. From our recurrence relation (66) it follows that the denominator of
our fraction is 1 — 5x 4 6x2. This means that to obtain the solution of our
problem we must expand the fraction

1 —7x
6x2 — S5x + 1

in a power series. Now, 6x2 — 5x 4 1 = (2x — 1)(3x — 1). Hence,

1 —7x 4 B
6x2 — 5x + 1 _2x—1+3x—1'
But then
1 —7x=AQ3x — 1) + B2x — 1).
Putting ¥ = 1/3, we obtain B = 4. Putting x = 1/2, we obtain A = —35, so that
1 —Tx =5 1 4
6x2 —5x+1 2x—1 ' 3x—1

= 5(1 — 2x)1 — 4(1 — 3x)!
= 5(1 420 4 - £ 2 o) — 4(1 4 3 4 oo 4 3nam o),

This implies that
¢, = 52" — 4-3n,
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On a Certain Nonlinear Recurrence Relation

The problem of successive partitions of a sequence (see p. 123) involved the
recurrence relation

T, = ToTn—1 + NI o+ 4+ T,,7T,. (67)

with T, = 1. To solve this relation we reduced our problem to one variant of the
problem of queues (see p. 63). This approach is not very satisfactory since
it is indirect and since the solution of the problem of queues is not particularly
elegant.

We now present a direct solution of the recurrence relation (67) which consists
in computing the generating function

We put
F(x) = xf (x) = Tox + Ty 4 -+ + Tpantl 4 - (69)

and square F(x). The result is
Fia) = Tox* + (TyTy + ThTop® + -+ + (ToToy + -+ + Doy T o+ -
In view of the recurrence relation (67),

TOTn—l + + Tn-—lTO = Tn .

Hence
F2(x) — 1x2 + T2x3 _|_ + Tﬂx'n+1.

This series is equal to F(x) — Tyx. Since T, = 1, we obtain
F¥x) = F(x) — x. (70)

Solving this quadratic equation for F(x), we find that

1 —v1 —4x
> .

F(x) =

Our choice of the minus sign before the square root is dictated by the fact
that choice of the plus sign implies F(0) = 1, whereas (69) implies that F(0) = 0.
By Formula (54),

VT = = (1 — 4ayi2 = 1 —2x—§c;x2
_2023_...__2__ noentl L,

3 n+1 2n
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Hence
1 2 aon
F(x) = 5 [1 — (1 — 2% — o — o O™ — )]
1 ¥ n
=x+ Cp® 4 - + mc2nx T (71)

Equating coefficients in (69) and (71), we see that T, = [1/(n + 1)] C3,, , in full
agreement with the solution obtained earlier by means of combinatorial
arguments (see p. 123).

Generating Functions and Partitions of Numbers

In Chap. IV we solved various combinatorial problems involving partitions of
numbers. Such problems can be easily solved by means of generating functions.
To explain the underlying idea, we consider the series

ag + ax + o+ axt + o,

where a, denotes the number of (unordered) partitions of n. It is frequently
possible to form an algebraic expression f(x) such that the result of removing
brackets in f(x) is a sum in which x™ enters exactly a, times. Then

f(x) =ag+ ax + - + ax" + -,

that 1s, f(x) is a generating function for the sequence 4, , a, ,..., a, ,... .

For example, consider the problem of computing the number of partitions of a
positive integer N tnto summands ny ,..., ny, subject to the restriction that each of these
numbers enters a partition at most once and the order of the summands in a partition
15 disregarded.

T'o solve this problem, we form the product

(1 4 ™)1 + x™) -+ (1 4 x™). (72)

If we remove brackets in this product, then we obtain a sum of the form
1+ «™ 4 --- 4 x™, where the numbers m, ,..., m, are sums of the different
combinations of numbers selected from among the numbers 7, ,..., 7, . It follows
that the number of appearances of ¥V in this sum is equal to the number of
partitions of N of the required type.

For example, to compute the number of ways of paying 78 cents using each of
the coins 1, 2, 3, 5, 10, 15, 20, 50 at most once, we form the product

(1 4 2)(1 4 (1 + *3)(1 4+ 25)(1 4 *x19)(1 + *x5)(1 + *x2)(1 + «x59)  (73)

remove brackets, and compute the coefficient of x4,
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Next we use generating functions to solve the following problem:

In how many ways can we pay 29 cents using 3— and 5-cent coins?

In this problem we are required to find the number of partitions of 29 into
summands 3 and 5 without regard to order. Another way of stating this problem
is to say that we wish to find the number of nonnegative solutions of the equation
3m -+ 5n = 29.

We form the product

(74)

Here the exponents of x in the first factor are the successive nonnegative multiples
of 3, and the exponents of x in the second factor are the successive nonnegative
multiples of 5. But then, after removal of brackets, the coefficient of ¥V is equal
to the number of nonnegative solutions of the equation 3m + 5z = N. In
particular, the coefficient of x2* furnishes the solution of our problem.

To avoid removing brackets, we can use the formula for an infinite geometric
progression and write (74) as

1 1 1

flx) = 1—a® 1 —a5 1 —ad— a8 a8

Then we divide the numerator by the denominator in the usual way except that
we arrange the two polynomials in increasing, rather than decreasing, powers of
x. The first few steps of the division process are:

1 1 — &% — a5 4 8
x3+x5_x8 1+x3+x5+x6+x8+...
x5+x6_x11
x8 L a8 |+ x10 — yll _ 413
x8_|_x9_|_x10_x13_x14

Continued division ultimately yields the required coefficient of 2.
This problem is a special case of the following problem:
Find the number of unordered partitions of N into summands a, b,..., m.
The relevant generating function is

f(x) = (1 +xa+x20 _|_ .es +xta + )
x(1+xb+x2b+...+xsb+...)
x(1+xm+x2m+...+xqm+...)

1
A== 0=

(75)
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For example, in the problem of changing a dime into coins of smaller
denominations (see p. 80) the required generating function is

1
0= == == =

that is,

1
f(x)= l_x_x2+x7_x9_x10+x11'

The first few steps in the division process are

1 1 —x — % 27 — x® — 210 4 411
x4 x2 — x7 4 a% | x10 — x11 1 4+« + 2x% 4 303 + Sxt 4 ---
242 - 3% — x7 — x8 | &9 - 210 — xI2
3x% 4 2xt — &7 — a8 — x¥ 4 2010 4 Dx1l 4 x1Z2 — D13
Saf | 3x5 — &7 — x® — #0 — 430 | Dxll _ 4x1% | I8 _ 3yld

The coefficient of x1° yields the answer to our problem.

Getting the answer by means of the usual division process can be quite a chore.
A different procedure consists in writing the algebraic fraction as a power series
with undetermined coefficients

1
1 —x— 2% 4+ x7 — &% — 510 4 x11

= Ao+ A + Ap® 4 o 4 Ay o

and multiplying both sides of this equality by the denominator on the left-hand
side. Then the coefficient of x* is

An - A'n—l - An—z + An—? - An—s - An—m + An—ll .

For n = 1, the coefficient of ¥* on the left-hand side is zero. Hence for 2 > 1,
the coefficients 4, must satisfy the recurrence relation

Ay =Ay y+ Ay g — An g+ An g+ Apyo— Anna -

The initial conditions are A, = 0, for n <0, and 4, = 1. It is now easy to
compute successively the various 4, .

‘The problems just considered involved unordered partitions of a number, As
an illustration of the use of generating functions to count ordered partitions we
consider the problem of the university applicant (see p. 76). Here we are
required to find the number of ordered partitions of 17 into four summands
which take on the values 3,4,5. The required generating function is
(#® + x¢ 4 x%)% In fact, when we remove brackets in the expression f(x) =
(x3 + x* + x5)4, then we obtain a sum of all possible terms of the form x=xBxvx?,
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where each entry in the quadruple «, B, ¥, 8 is one of the numbers 3, 4, 5. In
other words, the coefficient of x¥ gives the number of ordered partitions of N
into four summands whose values are 3, 4, or 5.

When expanding the expression (x® + x* 4 x%)* = x1%(1 + x + x2)* we can
make use of the multinomial expansion formula. A simpler way is to note that
I+ x + a2 = (1 — x%)j(1 — x), so that

1) = S = 1 — 1 —

By the binomial expansion, we have
(1 —a?)t =1 — 4a%  6a% — 4x* 4 x12,

and, by the binomial series expansion, we have

(1 —x)t=1+ 4x 4 10x% 4 20® + -+ +

4-5- (n—|—3) .
1 2 + ’

so that
f(x) = 2%(1 — 4a3® 4 6% — 4x® + x12)
X (1 4 4x + 10x% 4 20x® 4 35x* 4 56x5 + --°).

From this we find that the coefficient of x!7 has the value 16. This means that the
number of required partitions of 17 is 16.

In general, to find the number of ordered partitions of # into 2 summands
which take on the values , ,..., n, we use the generating function

flx) = (@™ + & + -+ &™) (76)

The problem is simplified if the numbers 7,,..,7, form an arithmetic
progression, for then x™1,..., x™ form a geometric progression and the expression
for f(x) is relatively easy to deal with.

Consider, for example, the problem of computing the number of ways in
which it is possible to obtain a score of 25 when throwing 7 dice. In this case the
generating function is

f(x) = (v + #* + - 4 &F)". (77)
Using the formula for the sum of a geometric progression, we see that

&1 — «8)?

o) ==

— &1 — a8l — )7
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Now we apply the binomial expansion to (1 — x%)7 and the binomial series
expansion to (1 — x)~7 and obtain the equality

fx) = 27(1 — Ta® 4 2112 — 35218 | 35520 — 21a%0 | T3 — x12)
X (1 + Txe 4 28x% + 84x3 4 210x* + 462x5 + ---),

from which it is easy to find the coefficient of x?5, the answer to our problem.
Many other problems discussed in Chap. IV can be solved by means of
generating functions using techniques similar to those employed above.

Summary of Results on Combinatorial Distributions

(1) The number of distributions of n different objects (no two alike) in 7
different boxes (no two alike) with empty boxes allowed is 7*.

(2) The number of distributions of z different objects in » different boxes
with no box empty is equal to the product of #! by the coefficient of x* in the
power series expansion of (¢* — 1)". This number can be written as

r(r — 1)
1-2

r”—%(r—l)”—l—

(r —2)" — -

(3) If in (2) we suppose the boxes all alike, then the number of distributions
is 7! times smaller (than in (2)).

(4) The number of distributions of # like objects in 7 different boxes with no
box empty is C71 .

(5) The number of distributions of z like objects in 7 different boxes with
empty boxes allowed is CI7% ;.

(6) The number of distributions of 7 like objects in 7 different boxes with
each box containing at least ¢ objects is CL7} oy, -

(7) The number of distributions of # like objects in » different boxes where
the number of objects in a box is a least g and at most ¢ + s — 1 is equal to the
coefficient of x*—72 in the power series expansion of [(1 — x%}/(1 — x)]".

(8) Let II denote the number of distributions of » like objects in r like
boxes with no box empty. Then we have the recurrence relation

I, =IO + I+
Also,
I, =1+, ..

Forn — r <7, we have IT}, = IT"_} .
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So far we have ignored the order of the objects in a box. For such “ordered
distributions” the following assertions hold:

(9) The number of ordered distributions of # different objects in r different
boxes with empty boxes allowed is

rr+ 1) @ +n—1).

(10) The number of ordered distributions of » different objects in 7 different
boxes with no box empty is

nl(n — 1)!
(n—r)(r—1) "~

—1
nt Cply =

If the boxes are all alike, then the number of such distributions is (n!/r!) C7-] .
(11) The number of ordered distributions of z or fewer different objects in 7
different boxes with empty boxes allowed is

1 r r(r + 1)
oo+ D=1 20 =2) +]

This number is the product of n! by the coefficient of x™ in the power series
expansion of e*(1 — x)~".

(12) Ifin (11) we disallow empty boxes, then the number of ordered distri-
butions is equal to the product of n! by the coefficient of "~ in the power series
expansion of ¢*(1 — x)~".
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Problems in Combinatorics

1. Five roads link towns 4 and B. Three roads link towns B and C. How
many roads link towns 4 and C?

2. Each of 2 fencing clubs has 100 members and each selects | member to
represent it at a fencing meet. In how many ways can the 2 men be chosen ?

3. 'There are 5 kinds of envelopes and 4 kinds of stamps of the same deno-
mination. In how many ways can we choose an envelope and a stamp for sending
a letter ?

4. In how many ways can we choose a consonant and a vowel in the word
“paste” ?

5. Answer the same question in connection with the word *‘bike.”

6. We cast a 6-sided die and spin an 8-sided top. In how many ways can the
two fall ?

7. Five roads lead to the top of a mountain. In how many ways can a tourist
go up and down the mountain? What is the answer if the tourist must not
retrace his steps ?

8. There are 20 sheep and 24 pigs on a farm. In how many ways can we
choose a sheep and a pig ? Having chosen a sheep and a pig, in how many ways
can we choose another sheep and another pig?

9. In how many ways can we choose a black square and a white square on a
chessboard ? In how many ways can we choose a pair of squares ?

10. In how many ways can we choose a black square and a white square on a
chessboard if the two squares must not belong to the same row or column ?

11. In how many ways can we choose 3 words, one each from 12 three-letter
words, 9 four-letter words, and 10 five-letter words ?

173
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12. Given 6 pairs of gloves of different sizes, in how many ways can we choose
2 gloves of different sizes ?

13. In how many ways can we choose 3 textbooks, one each from 3 copies
of an algebra textbook, 7 copies of a geometry textbook, and 7 copies of a
trigonometry textbook ?

14. A bookstore has 6 copies of I. S, T'urgenev’s novel ‘“‘Rudin,” 3 copies
of his novel “Nobleman’s Nest,” and 4 copies of his novel “Fathers and Sons.”
In addition, the bookstore has 5 copies of a combined edition of “Rudin” and
“Nobleman’s Nest,” and 7 copies of a combined edition of “Nobleman’s Nest”
and “Fathers and Sons.” In how many ways can we purchase a selection one each
of the 3 novels ¢

15. What is the answer to the preceding problem if we assume that the
bookstore also has 3 copies of a combined edition of “Rudin” and *“Fathers and
Sons” ?

16. A basket contains 12 apples and 10 oranges. Jack chooses an apple or an
orange. Then Jill chooses an apple and an orange. In which case does Jill have a
greater number of choices ?

17. Given 3 tops with 6, 8, and 10 numbered sides respectively. In how many
ways can the 3 tops fall ? What if at least 2 of the tops fall on the side marked
with the number | ?

18. In how many ways can we choose 3 out of 5 different colors?

19. How many 3-stripe flags can be made of materials of 5 different colors if
the stripes are to be all different # What if one of the stripes is to be red ?

20. How many dictionaries are needed for direct translation from each of 5
languages into another?

21. How many additional dictionaries are needed if the number of languages
is 10°?

22. In how many ways is it possible to choose 4 cards of different suits from
a deck of (52) cards ? What is the answer to the preceding question if no 2 of the
selected cards can have the same value (for example, 2 kings or 2 tens) ?

23. In how many ways is it possible to choose from a deck of cards 4 cards of
different suits, so that the diamonds-selection has the same value as the hearts-
selection, and the spades-selection has the same value as the clubs-selection ?

24. A newborn child can be given 1, 2, or 3 names. In how many ways can
a child be named if we can choose from 300 names?

25. We regard two seating arrangements at a round table as being the same
if each person has the same neighbors in both seating arrangements. What is the
number of different seating arrangements of 4 people ? Of 7 people ? In how many
cases will a certain 2 of the 7 people turn out to be neighbors ? In how many cases
will a certain 1 of the 7 people have a certain 2 neighbors ?

26. In how many ways can 5 girls and 3 boys be divided into 2 teams of 4 if
each team is to include at least 1 boy?
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27. In how many ways can 6 urgent letters be dispatched if we can make use
of 3 couriers ?

28. One person has 7 mathematics books and the other has 9 mathematics
books. In how many ways can the two people exchange a mathematics book ?

29. What is the answer to the preceding problem if the two people exchange
2 books ?

30. A meeting is to be addressed by 5 speakers, 4, B, C, D, E. In how many
ways can the speakers be ordered if B must not precede A ?

31. What is the answer to the preceding problem if B is to speak immediately
after 4°?

32, Inhow many ways can 5 men and 5 women be seated at a round table if
neighbors are to be of different sexes?

33. What is the answer to the preceding problem if the table is replaced by a
merry-go-round and we identify arrangements which differ by a rotation ?

34, 'Ten cards are selected out of a deck of 52 cards. In how many cases
do the 10 cards contain at least 1 ace ? Exactly 1 ace? At least 2 aces ? Exactly
2 aces?

35. Each of m lightposts at a railroad station can be made to beam a red,
yellow, or green light. How many different signals can be beamed by the array
of lightposts?

36. No two inhabitants of an imaginary country have the same number of
teeth. What is the maximal number of inhabitants of this country (a person can
have at most 32 teeth)?

37. A railroad compartment has 10 seats, 5 facing the locomotive and 5 facing
away from the locomotive. Of 10 passengers, 4 prefer to face the locomotive,
3 prefer to face away from the locomotive, and 3 have no preference. In how
many ways can the passengers be seated ?

38, There are 9 candidates running for 4 different offices. What is the number
of possible outcomes of the election ?

39. A delegation of 5 is to be elected from among 52 persons at a conference,
In how many ways can this be done ?

40. An automobile license number contains 1, 2, or 3 letters followed by a
4-digit number. Compute the maximal number of different licenses (the Latin
alphabet consists of 26 letters).

41. Mother has 2 apples and 3 pears. On each of 5 days she gives her child
1 fruit, In how many ways can this be done?

42, What is the answer to the preceding problem if the number of apples is m
and the number of pears is n?

43. Solve the analog of Problem 41 if there are 2 apples, 3 pears, and 4
oranges.

44. Father distributes 5 different oranges among 8 sons and each son gets
at most 1 orange. In how many ways can this be done ?
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45. What is the answer to the preceding problem if we do not restrict the
number of oranges received by each son?

46. How many different ““words” can we obtain by permuting the letters in
“mathematics” ? “parabola” ? “ingredient™ ?

47, A 30-member sports club delegates a 4-man team to take part in a
1000-meter race. In how many ways can the team be chosen ? In how many ways
can a 4-man team be chosen to take part in a relay race 100 4 200 4 400 - 800?

48. In how many ways can we place the white pieces (2 knights, 2 bishops,
2 rooks, 1 queen, and 1 king) in the first row of the chessboard ?

49, There are n telephone subscribers. Six subscribers happen to be talking
in pairs. In how many ways can this happen ?

50. T'he post office sells 10 types of postcards. In how many ways can one buy
12 postcards ? 8 postcards ? 8 different postcards ?

51. Inhow many ways can we choose 6 people including at least 2 women out
of a group of 7 men and 4 women ?

52. Find the number of 4-digit multiples of 4 composed of the digits 1, 2, 3,
4, 5.

53. A train with » passengers aboard makes m stops. In how many ways can
the passengers distribute themselves among these m stops ! What is the answer
to the preceding question if we are concerned only with the number of passengers
who get off at each stop ?

54. Compute the number of permutations of # symbols in which 2 symbols
a and b do not appear together. Also, the number of permutations in which 3
symbols a, b, ¢ do not appear together. Also, the number of permutations in
which no 2 of the 3 symbols a, b, ¢ appear together.

55. Ten people take part in an athletic meet. Each of 3 judges assigns 10
different ratings to the 10 athletes. For an athlete to be pronounced winner he
must be given the highest rating by at least 2 judges. Compute the fraction of
cases in which a winner is named.

56. Each of 4 students taking an examination is assigned one of the grades
A, B, or C. What is the number of possible scores ?

57. How many different 7-bead necklaces can be made with 7 different beads ?

58. How many different 7-bead necklaces can be made with 2 large beads and
5 small beads ?

59. There are 2000 inhabitants in a village. Show that at least 2 of them have
the same initials,

60. Seven boys and 10 girls are at a dance. A certain dance number involves
all the boys. In how many ways can the boys select partners ? What is the number
of outcomes if we consider only the girls left without partners ? Answer the same
questions 1if a certain 2 of the girls are sure to be asked to dance.

6l. A company consists of 3 officers, 6 sergeants, and 60 soldiers. In how
many ways can we form a detachment consisting of | officer, 2 sergeants, and
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20 soldiers ? What is the answer if the detachment is to include the commander
and the senior sergeant?

62, Twelve girls and 15 boys attend a school party. In how many ways can
we select 4 pairs to dance ?

63. In how many ways can we choose at least one each of 3 chickens, 4 ducks,
and 2 geese ?

64. In how many ways can m + n | p different objects be divided into 3
batches containing m, 7, and p objects respectively ?

65. There are m |+ n different books on a shelf. m of the books have black
bindings and # have red bindings. In how many ways can we arrange the books
so that the books with black bindings occupy the first m positions ? In how many
ways can we arrange the books so that the books with black bindings are together ?

66. In how many ways can we select a detachment of 1, 2, 3,..., 15 people
from a group of 15 people ?

67. Let p,,..., p, be distinct primes, What is the number of divisors of the
number

qg=p1, P;"

where «; ,..., «, are natural numbers (here we include the divisors | and ¢). What
is the sum of these divisors ?

68. In how many ways can we divide 12 half-dollar coins into 5 numbered
nonempty batches ?

69. In how many ways can we place 20 books on 5 shelves of a bookcase if
each shelf can accomodate all the 20 books ?

70. In how many ways can we place 5 rings on the fingers of one
hand excluding the thumb?

71, 'Thirty people vote on 5 issues, Each person votes in favor of | issue.
What is the number of voting outcomes if we are merely concerned with the
number of votes in favor of each issue?

72. A bookbinder is to bind 12 different books in red, green, and brown
cloth. In how many ways can he do this if each color of cloth is to be used for at
least one book ?

73. In how many ways can we make up 6 words out of the 26 letters of the
Latin alphabet if each letter is to be used exactly once?

74. In how many ways can we select 12 out of 17 people if a certain 2 people
must not both be selected ?

75. Five emeralds, 6 rubies, and 7 sapphires are made into a bracelet. In how
many was can this be done? (The stones in each category are supposed alike.)

76. In how many ways can one choose 3 of the 18 stones in the preceding
problem for a ring?

77. 'Three students share a room in a dormitory. They have 4 cups, 5 saucers,
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and 3 teaspoons, all different. In how many ways can they set the table for tea
(each setting consists of a cup, a saucer, and a teaspoon)?

78. A man has 5 female and 7 male acquaintances, and his wife has 7 female
and 5 male acquaintances. In how many ways can they invite 6 male and 6 female
acquaintances if husband and wife are to invite 6 acquaintances each ?

79. Four people can sit on each side of a boat. In how many ways can one
select a crew for the boat if out of 31 candidates 10 prefer portseats, 12 prefer
starboard seats, and 9 have no preference ?

80. An urn contains 10 counters numbered 1,..., 10. A person removes 3 of
the counters from the urn. In how many cases will the sum of the numbers on
these counters be 9 ? At least 97

81. In how many ways can we withdraw 6 out of 52 cards in a deck so that
each suit is represented ?

82. A choir consists of 10 persons. On 3 successive days, 6 persons are to be
selected for singing assignments. In how many ways can this be done if the 3
selections are to be different ¢

83. A man has 6 friends. Every day for 20 days in a row he invites 3 of his
friends. In how many ways can he do this if he does not want to have identical
company on any two days?

84. Three men and 2 women choose employment. The town has 3 factories
with openings (in the casting shops) for men, 2 knitting mills with openings for
women, and 2 factories with openings for workers of either sex. In how many
ways can these people choose employment ?

85. How many 5-letter words (with repetitions) can be composed of the
26 letters of the alphabet if no two neighboring letters may be the same ?

86. The winners in a mathematical contest are awarded 3 copies of one book,
2 copies of another book, and 1 copy of a third book. In how many ways can the
prizes be distributed if none of the 20 participants may receive 2 books? What
is the answer if a participant can be awarded 1, 2, or 3 different books (but no 2
copies of the same book) ?

87. Consider all the dominos from (0, 0) to (7, #). Show that the number of
dominos with face-sum 7 — r is equal to the number of dominos with face-sum
n + 7, and that this number is E[(n — » 4 2)/2]. How many dominos are there
altogether ?

88. In how many ways can 7 men and 7 women be seated at a round table if
no 2 women may be seated side by side?

89. In how many ways can one select a team of 6 out of 16 horses if the team
must include 3 of the 6 horses marked A4, B, C, 4’, B’, C’, but none of the pairs
A, A;B B;C C?

90. What is the number of 7-letter words composed of 9 consonants and
7 vowels if each word includes 4 different consonants and 3 different vowels ? How
many of these words contain no 2 consecutive consonants ?
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91. Each member of a division of a research institute knows at least one
foreign language. Six know Russian, 6 know German, and 7 know French. Four
know Russian and German, 3 know German and French, and 2 know French
and Russian. One person knows all 3 languages. How many people are employed
in the division of the institute ? How many of them know only Russian? How
many know only French ¢

92. Ninety-two people went for an outing. Forty-seven took along salami
sandwiches, 38 took along cheese sandwiches, 42 took along ham sandwiches,
28 took along cheese sandwiches and salami sandwiches, 31 took along salami
sandwiches and ham sandwiches, 26 took along cheese sandwhiches and ham
sandwiches. T'wenty five people took along sandwiches of all three kinds, Some
preferred pies to sandwiches. How many people took along pies ?

93, Ten couples go on a boat trip. Each boat carries 4 people. In how
many ways can the people occupy the boats if each boat isto carry 2 men and 2
women ?

94. In how many of the cases considered in the preceding problem will a
certain man and his wife occupy the same boat ?

95, In how many of the cases considered in Problem 93 will each of a certain
2 men be in the same boat with his wife ?

96. How many 4-digit numbers (with repetitions) can be composed of the
digits 0, 1, 2, 3, 4, 5, 6? (No number can start with the digit 0.)

97. Find the number of 6-digit numbers such that the sum of the 3-digit
number formed by the first 3 digits and the 3-digit number formed by the last
3 digits is less than 1000.

98. In how many ways can we place 12 white and 12 black checkers on the
black squares of a chessboard?

99. In how many permutations of the word ‘““‘Jupiter’ do the vowels appear
in alphabetical order?

100. In how many permutations of the word “Alabama’ do 4 letters “a” not
appear together ?

101. In how many ways can we permute the word *“‘opossum’ so that the
letter “p” directly follows the letter “o” ¢

102. In how many ways can we permute the word “Mississippi”’ so that no
2 letters “2”’ appear together ?

103. In how many ways can we permute the word “karakule’” so that no 2
vowels are together ?

104. In how many ways can we permute the letters in the word ‘*bivouac”
without changing the order of the vowels?

105. In how many ways can we permute the letters in the word *“parallelism”
without changing the order of the vowels?

106. In how many ways can we permute the letters in the word “poster” so
that there are 2 consonants between the 2 vowels?
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107. In how many ways can we permute the word “paroxysm’ so that the
letters in the second, fourth, and sixth positions are consonants ?

108. In how many ways can we choose in the word *‘paroxysm’’ 2 consonants
and 1 vowel ? What is the answer to the preceding question if one of the selected
consonants is to be “s”’ ?

109. In how many ways can we permute the word “Oporto” so that the
letter “‘0” does not appear 3 times in a row ?

110. What is the answer to Problem 109 if the letter “0o’’ must not appear
twice in a row?

111. Consider the phrase: “An eye for an eye, a tooth for a tooth.” In how
many ways can we select from this phrase an assortment of letters if we pay no
attention to order ?

112. In how many ways can we choose 3 letters from the phrase in Problem
1112

113. In how many ways can we choose 3 letters from the phrase in Problem
111 if order is taken into consideration ?

114. In how many ways can we permute the word ‘“‘bitumen’ so that the
vowels and the consonants appear in alphabetical order?

115. In how many ways can we permute the word “triannual” so that vowels
and consonants alternate? What is the answer if the word in question is
“samovar’’ ?

116. Inhow many ways can we permute the word “Abakan’ if the consonants
are to appear in alphabetical order ? What is the answer to the preceding question
if we add the restriction that two letters ““a’” must not appear together ?

117, In how many was can we permute the letters in the word *‘zigzag”
so that the same letters don’t appear together ? Answer the same question for the
word “Tartar.”

118. In how many ways can we select 4 letters out of the 6 letters in the word
*“T'artar” if we disregard order ? How many 4-digit numbers can we compose of
the digits in the number 132,132°?

119. How many nonnegative integers smaller than 1,000,000 include all four
of the digits 1, 2, 3, 4? How many of these numbers consist of the digits 1, 2, 3, 4
alone ?

120, Compute the sum of all 4-digit numbers obtained by permuting the
digits 1, 2, 3, 4.

121. Solve Problem 120 for the digits 1, 2, 2, 5.

122, Solve Problem 120 for the digits 1, 3, 3, 3.

123, Solve Problem 120 for the digits 1, 1, 4, 4.

124. Solve Problem 120 for all 5-digit numbers obtained by permuting the
digits 0, 1, 2, 3, 4. No number can begin with the digit 0.

125. How many numbers smaller than 1,000,000 can we make using the
digits 8 and 97
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126. Solve Problem 125 for the digits 9, 8, 7.

127. Solve Problem 125 for the digits 9, 8, 0. No number can begin with the
digit 0.

128, Compute the sum of all 3-digit numbers composed of the digits
1, 2, 3, 4.

129, Compute the sum of all 5-digit numbers composed of the digits
1, 2, 3, 4, 5 if each digit appears in a number exactly once. Compute the corre-
sponding sum for the digits 1, 2, 3,4, 5,6, 7, 8§, 9.

130. How many odd 4-digit numbers can be composed of the digits in the
number 3694 if each digit can appear at most once in a particular number ?
Compute the number of even 4-digit numbers composed in this way.

131. Compute the number of 6-digit numbers with 3 even digits and 3 odd
digits.

132. Solve Problem 131 if one allows 6-digit numbers starting with the
digit 0.

133. Compute the number of 6-digit numbers which do not begin with the
digit 0 and have even digit sum. Solve the same problem for the numbers from 1
to 999,999,

134. How many 10-digit numbers (not beginning with the digit 0) have
digit sum 3 ? What is the answer if instead of 10-digit numbers we consider all
the numbers from 1 to 9,999,999,999 ?

135. Compute the number of 9-digit numbers all of whose digits are
different.

136, How many numbers from 0 to 999 are not divisible by either 5 or 7°?

137. How many numbers from 0 to 999 are not divisible by 2, 3, 5,
or 7?

138, Compute the number of numbers from 0 to 999 which include the
digit 9; which include the digit 9 twice; which include the digit O; which include
the digit O twice; which include the digits 0 and 9; which include the digits 8 and
9. How many of the numbers from 0 to 999,999 do not have the same digit twice
in a row?

139. How many 4-digit numbers can be composed of the digits in the
123,153

140. How many 5-digit numbers can be composed of the digits in the number
12,335,233 ¢

141. How many 6-digit numbers can be composed of the digits in the
number 1,233,145,254 if the same digit must not appear twice in a row ?

142, How many 5-digit numbers can be composed of the digits in the
number 12,312,343 if the digit 3 must not appear 3 times in a row ?

143. In how many ways can we permute the digits in the number 12,341,234
if the same digit must not appear twice in a row?

144, Solve Problem 143 for the number 12,345,254,
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145. In how many ways can we permute the digits in the number
1,234,114,546 if the same digit must not appear 3 times in a row ?

146. Solve Problem 145 if the same digit must not appear twice in a row,

147. Inhow many ways can we choose 2 natural numbers from the numbers 1
to 20 so that their sum is odd?

148. In how many ways can we choose 3 natural numbers from the numbers
1 to 30 so that their sum is even ?
149. There are 2 highways from London to Brighton which connect 10

country roads (Fig. 34). How many routes from London to Brighton are free of
self-intersections ?

® B
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Fic. 34

150, The same setting as in Problem 149. T'wo travelers set out from London
along different highways. In how many cases will neither of the 2 travelers
traverse the same portion of highway in the same direction ?

151. There are 3 highways from London to Cambridge which connect 4
country roads (Fig. 35). How many of the routes from London to Cambridge do
not require a traveler either to traverse a portion of highway in the direction from
Cambridge to London or to traverse a portion of highway twice ?

152. 'There are unlimited numbers of 10-, 15-, and 20-cent coins. In how
many ways can we select 20 coins ?

Fic. 35

153. Consider a game in which a person hides 5 coins of the following
denomations: 1, 2, 3, 5, 10, 15, 20, 50 cents, and 1 dollar, and another person
guesses the denominations of the hidden coins. What 1s the maximal number of
false guesses ?

154, Compute the number of 5-digit numbers. In how many of these
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numbers are all the digits even ? In how many of these numbers are all the digits
odd ? How many of these numbers contain no digits smaller than 6 ? How many
of these numbers contain no digits larger than 3 ? How many of these numbers
contain all of the digits 1, 2, 3, 4, 5? How many of these numbers contain all of
the digits 0, 2, 4, 6, 8?

155. The numbers on the faces of each of 2 dice are 0, 1, 3, 7, 15, 31. Compute
the number of different sums obtained by throwing the 2 dice.

156. 'The numbers on the faces of each of 3 dice are 1, 4, 13, 40, 121, 364.
Compute the number of different sums obtained by throwing the three dice.

157. 'The numbers on the faces of each of 6 dice are 1, 2, 3, 4, 5, 6. Regard
the dice as different. Compute the number of throws in which the dice turn up
the same number, 2 different numbers, 3 different numbers, 4 different numbers,
5 different numbers, 6 different numbers.

158. What are the possible outcomes in throwing 7 ordinary dice ? (Here we
disregard order of the dice.)

159. In how many ways can we write the number 1,000,000 as a product of
3 ordered factors ?

160. Solve Problem 159 if order of the factors is disregarded.

161. In how many ways can one distribute 9 coins of different denominations
in 2 pockets ?

162. In how many ways can we distribute 37z different objects among
3 people so that each person gets 7 of the objects ?

163. In how many ways can we group 2n objects in pairs if we disregard
order within each pair as well as order of the pairs ?

164. Solve Problem 163 for nk objects distributed in z groups of & objects
each.

165. In how many ways can 30 workers be separated into 3 groups of 10?
Into 10 groups of 3?

166. In how many ways can we divide a deck of 36 cards into 2 halves if each
half is to contain 2 aces?

167. In how many ways can we package 10 books into 5 packages containing
2 books each (disregard order of the packages as well as order of the books in a
package)?

168. In how many ways can we package 9 books if 4 packages are to contain
2 books each and 1 package is to contain 1 book ?

169. Solve Problem 168 if there are to be 3 packages of 3 books each.

170. In how many ways can 3 people divide among themselves 6 apples,
1 orange, 1 plum, | lemon, | pear, 1 quince, and 1 date?

171. What is the answer to Problem 170 if each person is to get exactly 4
fruits?

172. Person A4 has 3 apples, | pear, 1 plum, and 1 quince. Person B has
3 apples, 1 orange, 1 lemon, and 1 date. Person C has 3 apples, 1 tangerine,



184 VIII. Problems in Combinatorics

1 peach, and 1 apricot. In how many ways can they divide these fruits among
themselves so that each gets 6 items ?

173. In how many ways can we divide a deck of 52 cards among 13 players if
each player is to get 4 cards? In how many ways can this be done if each player
is to have 1 card of each suit ? In how many ways can this be done if 1 player is
to have cards of different suits and the remaining 12 players are each to
have cards of the same suit?

174. In how many ways can 4 cards be removed from a full deck so that the
cards are of exactly 3 suits ? Of exactly 2 suits ?

175. In how many ways can we distribute 52 cards among 4 players so that
each player gets 3 cards of each of 3 suits and 4 cards of the fourth suit ?

176. In how many ways can we distribute 18 different objects among 5 people
so that 4 people get 4 objects each and the fifth person gets 2 objects. Solve the
same problem if 3 people get 4 objects each and 2 people get 3 objects each,

177. How many selections can we make up by taking 0, 1, or 2 objects from
each of 14 different pairs of objects # We disregard order in a selection.

178. In how many ways can we place 4 black balls, 4 white balls, and 4 blue
balls in 6 different boxes. Any box may be left empty.

179. In how many ways can we separate 3 one-dollar bills and 10 fifty-cent
coins into 4 numered batches ? Any batch may be empty.

180. Show that the number of (unordered) partitions of the number # into
summands is equal to the number of (unordered) partitions of the number 2z into
n summands.

181, Consider an ordered arrangement of # objects. In how many ways can
we remove 3 of these objects without removing neighboring objects ?

182. A child places black and white chess pieces (2 knights, 2 bishops,
2 rooks, 1 queen, and | king of each color) in the first 2 rows of a chessboard.
In how many ways can he do this?

183. The setting as in Problem 182. In how many ways can these pieces be
placed on the whole board ?

184. Compute the number of arrangements of all the chess figures (black and
white) on a chessboard.

185. In how many ways can we place 15 white checkers and 15 black
checkers on 24 squares so that each square contains checkers of one color only ?
(This is how checkers are placed in the Eastern game of “Nardi.”)

186. In how many ways can we place 20 white checkers on a chessboard so
that the resulting configuration is unchanged by a rotation through 90°?

187. In how many ways can we place 20 white checkers on a chessboard so
that the resulting configuration is symmetric with respect to a line which divides
the chessboard in halves ?

188. Solve Problem 187 with the checkers placed on black squares.

189. In how many ways can we place 12 white and 12 black checkers on
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black squares of a chessboard so that the resulting configuration is symmetric
with respect to the center of the chessboard ?

190. Solve Problem 189 if checkers corresponding under a central symmetry
are to differ in color.

191. In how many ways can 20 white checkers be set out along the border
lines of a chessboard so that the resulting configuration is unchanged by a
rotation through 90°?

192. In how many ways can 20 white checkers be set out along the border
lines of a chessboard so that the checkers on opposite sides of the board are
symmetric with respect to the lines which divide the board in half ?

193. In how many ways can we place 7 white balls and 2 black balls in 9
billiard pockets ? We suppose the pockets different and allow empty pockets.

194. In how many ways can we place 7 white balls, 1 black ball, and 1 red ball
in 9 billiard pockets ?

195. In how many ways can we distribute 27 books among 3 people 4, B, C,
so that A and B receive twice as many books as C'?

196. Eight people enter an elevator. At each of 4 floor stops at least 1 person
leaves the elevator. After 4 floor stops the elevator is empty. In how many ways
can this take place?

197. In how many ways can we choose 3 of the numbers from 1 to 100 so that
their sum is divisible by 3?

198. In how many ways can we choose 3 out of 3z successive numbers so that
their sum is divisible by 3¢

199. Given 7 white balls and 1 black ball. In how many ways can some of
these balls be placed in » + 1 billiard pockets which hold 1 ball each ?

200. In how many ways can we order m white and 7 black balls so that the
number of contacts between black and white balls is 27 — 1? 2r?

201. A student who passes an examination earns 3, 4, or 5 points depending
on the quality of his paper. In how many ways can he earn a total of 30 points by
passing examinations in 8 different subjects ?

202. Show that there are (m 4 n)! D, /m!n! permutations (see p. 51) of
m -+ n objects which leave exactly n objects fixed.

203. Show that the number of ways of distributing r different things among
n + p people so that each of the n persons obtains at least 1 object is

Sp=m+p) —nn+p—1)+Coln+p—2)— -+ (—1)7"

204, Show that the number of partitions of 2r 4 x into r 4 x positive
summands 1s the same as the number of partitions of 7 into nonnegative
summands,

205. A society of n members elects one of its members as its representative.
Each member votes for just one candidate (possibly himself). The outcome of an
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election may be described in terms of: (a) who voted for whom; or in terms of
(b) the number of votes received by various candidates. These two points of view
yield different numbers of possible election outcomes. What are these numbers ?

206. Show that the number of ways of placing 2z like objects in 3 like boxes
so that the sum of the objects in any 2 of the boxes exceeds the number of objects
in the third box is the same as the number of ways of placing 2»n — 3 like objects
in 3 like boxes subject to the same condition.

207. Show that there are 27! ways of choosing an odd number of objects
from n objects.

208. Show that there are 3n% + 37 4+ 1 ways of dividing 2z objects of one
kind, 27z objects of a second kind, and 2% objects of a third kind between 2 people
so that each person gets 37 objects.

209. In Problem 208 add 27 objects of a fourth kind and show that the
number of ways in which the resulting 8z objects can be divided between 2
people so that each person gets 4n objects is

1(2n -+ 1)(8n% + 8n + 3).

210. Consider Problems 208 and 209. Show that if we distinguish between
recipients, then the answers are, respectively,

1(37% 4 3n + 2) and  ¥(n + 1)(8n% 4 4n 4 3).

211. There are 2n objects of each of m kinds. Show that these 2nm objects
can be divided in half in

m—1 1, m—1 2 vm—1 . T m—1
Cmn+m—1 - CmCmn+m—2n—2 + CmCmn-l-'rn—4n—3 — et CmCmn+m—1—:c(2n+1) -+ -

ways.
212. In how many ways can we place 5 white balls, 5 black balls, and 5 red
balls in 3 different boxes if each box is to contain 5 balls ?
213. There are n objects of each of 3 kinds. Show that the number of ways of
giving n of these objects to each of 3 people 4, B, and C, is

CareCarz — 3Cay5 = 3(n + 1)(n + 2)(n* + 3n + 4).

214. Three Englishmen, 3 Frenchmen, and 3 T'urks are to be seated in a row
so that no 3 countrymen sit together. In how many ways can this be done?

215, Solve Problem 214 if no 2 countrymen may sit together.

216. Three Englishmen, 3 Frenchmen, and 3 Turks are to be seated at a
round table so that no 2 countrymen sit together. In how many ways can this be
done?
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217. Compute the number of rows of stamps worth 40 cents if the stamps are
of the following denominations: 5, 10, 15, and 20 cents.

218. In how many ways can we change 1 dollar into 10-, 15-, 20-, and 50-cent
coints ?

219. Given the following row of weights: 1, 1, 2, 5, 10, 10, 20, 50 grams.
In how many ways can we weigh a 78-gram object if the position of the weights
in the above array is to be taken into consideration in the weighing process ?

220. Given 3 black balls, 1 red ball, 1 white ball, and 1 blue ball. Compute
the number of different rows of 4 of these balls.

221. Compute the number of ways of writing a natural number # as an
ordered sum of 3 natural numbers.

222, How many times do we use each of the digits 0, 1,..., 9 in writing all the
numbers from 1 to 999,999 inclusive ? From | to 10* — 1 inclusive?

223. Compute the number of 10-digit numbers which contain only the
digits 1, 2, 3 with the digit 3 appearing in each number exactly twice. How many
of these numbers are divisible by 9?

224, Two numbers are said to form an inversion if the larger number
precedes the smaller number. Compute the number of inversions in the set of all
permutations of the numbers 1, 2,..., .

225, Show that the number of partitions of #n into 3 distinct positive
summands is

P(2=3t12)

226, Show that the number of partitions of 12z 4 5 into 4 positive
summands each <<6n } 2 is

Mn + 1)(127% 4+ 9 + 2).

227. Show that the number of partitions of 12z + 5 into 4 distinct positive
summands <6n + 2 is

.

(1222 + 3n — 1)

[N TR

228. Find the number of triples of unequal natural numbers <100 which
form a geometric progression.

229. Compute the number of rows of 6 Englishmen, 7 Frenchmen, and
10 T'urks in which an Englishman invariably stands between a Frenchman and a
Turk and in which a Frenchman and a Turk never stand side by side.

230. Solve Problem 229 for 5 Englishmen, 7 Frenchmen, and 10 Turks.

231. How many pairs of numbers are there with greatest common divisor G
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and least common multiple M such that M = Ga*b8%¢¥d® and aq, b, ¢, d are
different primes?

232. Delete the words ‘“‘greatest’” and “least” in Problem 231 and solve the
resulting problem.

233. Compute the number of 6-letter combinations of 20 different letters if
no letter is to appear in a combination more than 2 times.

234, Of p 4 g + rletters, p are «, g are B, and r are . What is the number of
permutations of these letters in which o appears before 8 and g before y?

235. A band 30 inches long is painted according to the scheme: red, white,
blue, red, white, blue, and so on. The first stripe appearing on the band is red
and the last is blue. The length of each stripe is given by an integer >2. The
total length of the part of the band painted a particular color is 10 inches.
Compute the number of such color patterns. What is the answer if we dispense
with the condition that the last stripe is blue? Show that if the length of each
stripe is >>3, then in 153 cases the last stripe is blue, in 71 cases the last stripe
is white, and in 81 cases the last stripe is red.

236. I have 6 friends. I dined with each of them 7 times, with any 2 of them
5 times, with any 3 of them 4 times, with any 4 of them 3 times, with any 5 of
them 2 times, with all 6 of them | time, without each one of them 8 times. How
many times did I dine alone?

237. Each of 12 students is taking an examination in 2 subjects. One teacher
examines the students in one subject and another in the other subject, and each
teacher takes 5 minutes to examine a student in a subject. In how many ways can
the examinations be scheduled without a student being required to appear
before both examiners at the same time ?

238, In how many ways can each of 6 people select a left glove and a right
glove out of a total of 6 pairs of gloves so that no person selects a matching pair
of gloves?

239. The letters in a28%)? are permuted so that each letter has a like neighbor
on one side or on the other side. Show that the number of such permutations is 6.
Show that the answer to this problem is 6 for the expression o33%/3, 90 for the
expression af8%A, and 426 for the expression a®8%/5,

240. Each of n countries sends 4 representatives to a chess tournament. In
how many ways can these people be lined up so that each person has a country-
man for a neighbor?

241, 'The squares of a chessboard are painted 8 colors. The squares of each
row are painted all the 8 colors and no 2 consecutive squares of one column are
painted the same color. In how many ways can this be done ?

242, Given 7 like things and 7 additional different things. In how many ways
can we choose 7 of these 27 things ? In how many ways can we order these 2n
things ?

243. m Frenchmen and » Englishmen stand in a row so that each person
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has a countryman for a neighbor. Show that the number of such arrangements is
mlnl [1 4+ (C_y + CL_NCoy +Ch_y)
+ (Cns + CralCrs + Cry)
+ (Crs + Crs)(Cry + Crs) + -1,

244, How many 6-digit numbers contain exactly 3 different digits?

245, How many m-digit numbers contain exactly k different digits ?

246. Compute the number of k-samples of the digits 1, 2,..., # in which the
even numbers occupy the even positions, the odd numbers occupy the odd
positions, and all the numbers in the sample are arranged in increasing order.

247. Given 2n elements a,, 4, , 43, 45 ,..., 4, , 4, , With a; =~ a; for i £ .
How many permutations of these 2n elements do not contain 2 like elements in
a row?

248. Each of n selections contains ¢ like elements. Elements belonging to
different selections are different. How many permutations of these n¢ elements
do not contain 2 like elements in a row?

249. Solve Problem 248 if the elements are arranged in a circle.

250. n books are arranged on a shelf. In how many ways can we select p of
these books so that there are at least s books between any two of the selected
books as well as after the pth selected book ?

251, The numbers of students representing grades 5, 6, 7, 8, 9, and 10 at a
mathematical contest form an arithmetical progression. The number of awards
given out to each grade is equal to the difference of 2 successive terms in the
progression. Show that the number of ways of distributing the awards to all the
participants is the same as the number of ways of distributing all the awards to
the 10th grade students in the contest.

252. A sheet of graph paper is ruled into squares which we call unit squares.
We call the side of a unit square a segment. We draw a square ABCD made up of
16 unit squares. We consider all shortest paths from the point 4 to the point C
leading along the sides of the unit squares. Prove that the number of such paths
is equal to 70, and that 4 segments are traversed by 35 paths, 8 by 20 paths, 4 by
18 paths, 4 by 15 paths, 4 by 12 paths, 4 by 10 paths, 4 by 5 paths, 4 by 4 paths,
and 4 by 1 path. Also prove that 1 junction is crossed by 36 paths, 4 by 35 paths,
4 by 30 paths, 4 by 15 paths, 4 by 5 paths, 4 by 40 paths, and 2 by 1 path (the
points 4 and C are excluded).

253. How many triangles can be incribed in a convex hexagon so that the
vertices of each triangle coincide with some of the vertices of the hexagon?

254, What is the number of triangles each of whose sides has length 4, 5, 6,
or7?
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255. What is the number of rectangular parallelepipeds such that the length
of each edge is an integer from 1 to 10?

256, Compute the number of triangles determined by 4 lines (in a plane) no
2 of which are parallel and no 3 of which are concurrent.

257. Given n coplanar points such that p of them are collinear and such that
no 3 of the remaining » — p points are collinear. Compute the number of
triangles determined by these points.

258. Given p points on a line and ¢ points on a parallel line. Compute the
number of triangles determined by these p | ¢ points.

259. Add to the points in Problem 258 r points lying on a line parallel to the
other 2 lines and assume that no 3 of the p + ¢ + r points lie on a line inter-
secting the 3 parallel lines. How many additional triangles do we obtain ?

260, Each side of a square is divided into 7 segments. How many triangles
are determined by the division points ?

261. Given z coplanar lines no 2 of which are parallel and no 3 of which are
concurrent. Compute the number of points of intersection.

262. There are n coplanar lines, p of which intersect in a point 4, and ¢ in a
point B. None of these lines joins the points 4 and B, no 2 of them are parallel,
and any point C other than A or B is the point of intersection of at most 2 lines.
Compute the number of points of intersection of the # lines.

263. Compute the number of regions determined by # coplanar lines no 2 of
which are parallel and no 3 of which are concurrent.

264. Consider 7 planes such that no 4 of them have a point in common, no 3
have a line in common, and no 2 are parallel. Compute the number of regions
determined by the planes.

265. Let A, B, C, D, E be 5 coplanar points such that no 2 of the lines
joining these points in pairs are parallel, perpendicular, or coincident. From
each point we drop perpendiculars to the lines which join the remaining points
in pairs. Compute the maximal number of points of intersection of the
perpendiculars,

266. Compute the number of triangles each of whose sides is an integer
greater than 7 and not exceeding 2n. How many of these triangles are isosceles
and how many are equilateral ?

267. Prove that the number of triangles each of whose sides is an integer not
exceeding 2n 1s {n(n 4 1)(4n + 5). Also prove that if we exclude isosceles
triangles, then the corresponding number is }n(n — 1)(4n — 5).

268. Prove that the number of triangles each of whose sides does not exceed
2n — 1 1s n(n 4 1)(4n — 1). Also show that if we exclude isosceles triangles,
then the corresponding number is }(n — 1)(z — 2)(4n — 3).

269. Given 7z coplanar lines no 3 of which are concurrent. Prove that the
number of unordered groups consisting of z points of intersection no 3 of which
are collinear 1s §(n — 1)L
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270. Given n coplanar points no 3 of which are collinear, Compute
the number of r-sided closed polygonal lines whose vertices are among the n given
points.

271. Given 7z points on a line and m points on a line parallel to it. Connect
each point of one line to each point of the other line and assume that no 3 of the
resulting lines are concurrent. Prove that the number of points of intersection
of these lines is mn(m — 1)(n — 1)/2 (the count does not include the m 4 =
initial points).

272, Let n be the number of points in a plane such that no 3 are collinear and
no 4 lie on a circle. Draw a line through every 2 of the z points and draw a circle
through every 3 of the n points. Compute the maximal number of points of
intersection of the set of lines with the set of circles,

273. Given n points in space such that no 4 of the points are coplanar and
such that no 2 of the planes determined by triples of the given points are parallel.
Compute the number of lines of intersection of the planes as well as the number
of lines of intersection which do not contain any of the 7 given points.

274, Out of n segments of length 1, 2,..., n, we select 4 segments in such a
way that the quadrilateral on these segments can be circumscribed about a
circle, Show that the number of such selections is

[2n(n — 2)(2n — 5) — 3 + (—1)"]/48.

What 1s the corresponding number of selections if the sides of the quadrilateral
are of equal length ?

275. Given n points no 4 of which lie on a circle. What is the maximal
number of points of intersection of the set of circles determined by all triples of
points belonging to the given set of n points ?

276. Show that n planes passing through the center of a sphere divide it into
at most n®2 — n 4 2 parts,

277. In how many geometrically different ways can we paint the faces of
a cube 6 different colors? T'wo ways of painting a cube 6 different colors are
said to be geometrically the same if they differ only by a a rigid motion of the
cube.

278. In how many geometricaly different ways can we paint the faces of a
tetrahedron 4 different colors ?

279. In how many geometrically different ways can we paint the faces of an
octahedron 8 different colors ?

280. Solve the analogs of the three preceding problems for the regular
dodecahedron and the regular icosahedron.

281. Modify Problems 277-280 by considering the possibility of using fewer
colors than there are faces in the given figure (for example, consider the
possibility of painting the faces of the cube 2, 3, 4, or 5 colors).
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282, What is the number of triangles with integral sides and perimeter 40 ?
Perimeter 43 ?

283, Show that there are # + 1 more triangles with integral sides and
perimeter 47 - 3 than there are triangles with integral sides and perimeter 4#.

284. Prove the validity of the following table which gives the number of
triangles with integral sides and perimeter N.

Number of Number of
N triangles N triangles
12n 3 12+ 6 3n2 4+ 3n + 1
12+ 1 n(3n 4+ 2) 12n + 7 4+ 1D3n 4+ 2)
12 + 2 n(3n + 1) 127 + 8 (m+ D@n+ 1)
127 + 3 4+ In+1 12n+ 9 In®+6n-+3
12 4+ 4 n(3n + 2) 127 + 10 (n+ D3n + 2)
12n + 5 (n+ DG3n+ 1) 122 4+ 11 I 4+ Tn+ 4

285. A certain town has a system of bus routes satisfying the following
conditions:

(1) There 1s a direct bus route joining any 2 bus stops;

(2) Any 2 bus routes share a unique bus stop;

(3) There are exactly # bus stops on each route.

What is the number of bus routes in the town?

286. A town has 57 bus routes. We know that:

(1) There is a direct bus route joining any 2 bus stops;

(2) Any 2 bus routes share a unique bus stop;

(3) There are at least 3 bus stops on each route.

What is the number of bus stops on each route?

287. Isit possible to have a system of 10 bus routes with bus stops distributed
so that for every 8 bus routes there is a bus stop not on any of these 8 routes and
every 9 bus routes pass through all of the bus stops in the system?

288. Given 3 planes and a sphere in space. What 1s the maximal number of
spheres tangent to all 4 given figures,

289. Through each of 3 points there pass m lines such that no 2 lines from
different pencils are parallel and no 3 lines from different pencils are concurrent.
Compute the number of points of intersection of these lines.

290. Of n given points in space, m points belong to a plane P, and of the
remaining n — m points no 4 are coplanar., Compute the number of planes
containing 3 of the given points.

291. Let 4, B, C be 3 given points in a plane. We pass m lines through 4,
lines through B, and p lines through C so that no 2 lines from different pencils are
parallel and no 3 lines from different pencils are concurrent. Find the number of
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triangles whose vertices are different from A4, B, C and belong to the set of points
of intersection of the given lines.

292. Compute the number of triangles inscribed in a convex z-gon which
have no points other than their vertices in common with this #-gon.

293, On each of n given lines in a plane we select p points such that none of
the points is a point of intersection of the given lines and no 3 of the points lie on
a line other than the given lines. Find the number of triangles whose vertices
belong to this set of points.

294, Show that the number of points of intersection of the diagonals of an
n-gon lying outside the n-gon is n(n — 3)(n — 4)(r — 5)/12, and lying inside the
n-gon is n(n — 1)(n — 2)(n — 3)/24. (We assume that no 2 diagonals are parallel
and no 3 diagonals are concurrent.)

295. Given z points on a circle, compute the number of polygons (convex or
nonconvex) inscribed in this circle whose vertices belong to the given set of »
points. How many of these polygons are convex ?

296. Given m + n coplanar lines such that the first m lines are parallel, none
of the remaining » lines is parallel to any of the other given lines, and such that
no 3 lines are concurrent. Compute the number of regions into which the given
lines divide the plane.

297. Of 11 given points, 5 lie on a circle and no 4 of the remaining 6 points
lie on a circle. Compute the number of circles containing at least 3 of the given
points.

298. Given 10 coplanar lines such that no 2 are parallel, no 3 are concurrent,
and no 4 are tangent to a circle, compute the number of circles tangent to 3 of
the given 10 lines.

299. Find the number of convex k-gons whose vertices are among the vertices
of a convex n-gon and whose adjoining vertices are separated by at least s vertices
of the n-gon.

300. A parallelogram is cut by 7 lines parallel to one side and r lines parallel to
its adjoining side. Compute the number of resulting parallelograms.

301. Into how many regions is a convex n-gon divided by its diagonals ?

302. Thereis 1 card with the number 1, there are 2 cards with the number
2, 3 cards with the number 3, and so on. Show that the number of ways of
withdrawing 2 cards whose numbers add up to n is n(n? — 1)/12 or n(n? — 4)/12
according as 7z 1s odd or even.

303. Of 3n 4 1 objects, 7 are alike and the others are different. Show that
there are 22" ways of withdrawing # of these objects.

304. In how many ways can we withdraw 3 of the numbers 1, 2, 3,..., 2n
to obtain an arithmetical progression ? Answer the same question for the sequence
1,2,.,2n+4+ 1.

305. Consider a number of simple closed curves in the plane such that each
curve intersects each of the remaining curves in at least 2 points. Let 7, denote
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the number of points of intersection of the curves in which exactly r of the
curves meet, Then the number of regions bounded by arcs of the curves and
containing no such arcs in their interiors is

14 my+ 2my + o 4 11y + o,

306. Consider 2 coplanar pencils of m and # lines, respectively. Into how
many regions do these lines divide the plane if no 2 of the lines are parallel and
no line joins the centers 4 and B of the pencils?

307. Can each of 77 telephones be connected to exactly 15 of these
telephones ?

308. Compute the sum of the coefficients of the polynomial obtained by
expanding the expression

(7a% — 1352 + 522)1964 (33 — 832 4 6y + 2)® + (24® + 18y3 — 21)1965,

309. A box containes 100 colored balls. Of these, 28 are red, 20 green,
12 yellow, 20 blue, 10 white, and 10 black. What is the minimal number of balls
which one must withdraw to be sure to have withdrawn 15 balls of one color?

310. We can paint all the faces of a cube white, or all of them black, or some
white and some black. Find the number of geometrically different ways of
painting the cube (see Problem 277).

311. Solve Problem 310 if instead of painting the faces of a cube we paint its
vertices.

312. Models of polyhedra can be made of plane paper cutouts which are
bent along the edges. In the case of a regular tetrahedron, it is possible to make 2
different cutouts. How many different cutouts are there for a cube ?

313. A regular dodecahedron can be painted 4 colors so that any 2 adjoining
faces are painted different colors. In how many geometrically different ways can
this be done?

314. Itis possible to select 4 out of the 6 edges of a tetrahedron such that the
selected edges form a closed quadrilateral in three-space. The vertices of this
quadrilateral include all of the vertices of the tetrahedron. Can the same be done
with an octahedron? A dodecahedron? An icosahedron? How many solutions
are there to each of these problems ?

315. A particle is located at the origin. In a unit of time it splits into 2
particles of which one moves a unit to the left and the other a unit to the right.
This process is repeated after each unit of time. Also, if 2 particles end up in the
same spot, they annihilate each other (so that, for example, after 2 units of time
there will be only 2 particles left). How many particles will there be after 129
units of time ? After »# units of time ?

316. A certain alphabet uses 6 letters encoded for telegraphic transmission as
follows:
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A certain word was transmitted without breaks between groups of symbols
denoting different letters. The result was an unbroken chain of 12 dots and
dashes. In how many ways can this chain of dots and dashes be decoded ?

317. Compare the size of the set of all numbers between 1 and 10,000,000
inclusive which do not contain the digit 1 with the set of the remaining numbers
in the same range.

318. Consider 7-symbol “words,” where a symbol is either a dot or a
dash., What is the largest set of words such that any 2 words differ in at least 3
places?

319. A circular loop is divided into p parts, p prime. In how many ways can
we paint the loop 7 colors if we 1dentify patterns which differ by a rotation of the
loop ?

320. Each of the numbers 1, 2,..., 2 is placed in one of #% squares of an
n by n ruled sheet in such a way that the numbers in each row and in each column
form an arithmetic progression. In how many ways can this be done ?

321. A person has no more than 300,000 hairs on his head. Show that there
are at least 10 people in Moscow (population about 6 million) with the same
number of hairs.

322. Given 2n + 1 objects. Show that there are as many ways of choosing
an odd number of these objects as there are ways of choosing an even number of
these objects.

323, Show that there are more ways of changing 1 dollar into 2- and 5-cent
coins than there are ways of changing 1 dollar into 3— and 5—cent coins.

324. In how many was can we change a 20—cent coin into 1-, 2—, and 5—cent
coins ?

325, Show that a selection of weights containing 1 mg (mg stands for
milligram), 2 mg, 2 mg, 5mg, 10 mg, 20 mg, 20 mg, 50 mg, 100 mg, 200 mg,
200 mg, 500 mg, 1 g (g stands for gram), and so on, suffices to give any integral
number of milligrams.

326. Find the sum of all even 4-digit numbers composed of the digits
0,1,2,3,4,0r5.

327. 2ncards are shuffled as follows: First the cards are divided into 2 batches
of n cards each. Then we alternate the cards of the 2 batches so that the card
numbered z 4 1 becomes first, the card numbered 1 becomes second, the card
numbered 7 -} 2 becomes third, the card numbered 2 becomes fourth, and so on.
Show that after  shuffles, the card originally occupying the position p occupies
the position x, where x is the remainder in the division of p - 27 by 2n 4 1.

328. Show that if in Problem 327 the deck contains 6m + 2 cards, then the
cards numbered 2m + 1 and 4m 4 2 exchange positions after each shuffle.

329, Show that if the deck in Problem 327 contains 14m - 6 cards, then
after 3 shuffles the cards numbered 2m + 1, 2(2m 4 1), 3(2m + 1), 42m + 1),
5(2m +- 1), 6(2m + 1) return to their original positions.
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330. If in Problem 327, 2¢ — 1 is divisible by 2z 4 1, then after x shuflles
all the cards in a deck of 2z cards return to their original positions.

331. A deck of cards is shuffled as follows: We take the first card, put the
second card on top of the first card, put the third card under the first card, and
so on. Show that if the deck consists of 6m — 2 cards, then the position of the
2nth card remains unchanged.

332. 22 cards are shuffled as in Problem 331. Show that card 8 stays fixed,
cards 5 and 14 exchange locations, and cards 3, 13, 18 are permuted cyclically.

333. Retain the setting of Problem 331. Show that the cards in a deck of 16,
32, 42, 28, 36, 12, 20, 46, 22, 52, 14, 18, 26, 30, 50 cards return to their original
positions after 5, 6, 8, 9, 9, 10, 10, 10, 12, 12, 14, 18, 26, 30, 50 shuffles,
respectively.

334. A square is subdivided into 16 squares which are painted white, black,
red, and blue. In how many ways can the painting be done if the squares in any
row or column are to be painted different colors?

335. Fifteen students about to go for a walk are lined up in 5 rows of 3. How
many times can the students be lined up so that 2 students who are in the same
row on one occasion are not in the same row on another occasion ?

336. Show that if  is a natural number, then (7®)!/(n!)**! is a natural number;
if m and n are odd natural numbers, then (mn!)/[(m!)("+1)/2(n!)m+1)/2] is a natural
number. '

337. nobjects are arranged on a circle. Let f,, be the number of permutations
of these objects in which each object follows a different object from the one it
followed originally. Show that

fn +f'n+1 - Dn'

(For the definition of D, see p. 51.)
338. Find the number of integral solutions of the equation

xl+x2+“.+xfp:m3

with0 I<<u, <<, & = 1,...,p.

339, There are 7 copies of one book, 8 copies of another book, and 9 copies
of a third book. In how many ways can each of 2 people be given 12 of these
books ?

340. Consider all n-combinations with repetitions of # letters. Show that each
letter appears in these combinations Cg, ; times.

341. The distance from 4 to B is 999 miles. Along the way, at one mile
intervals, are signs indicating the distances to A and B, respectively: (0; 999),
(1; 998),..., (999; 0). How many of these signs involve just 2 different digits?

342, Show that the number of all possible permutations with repetitions of
up to m white balls and up to » black balls is P(m + 1,n + 1) — 2.
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343. Show that the sum of the white balls in all posible permutations with
repetitions of up to m white balls and up to n black balls is

mn + m —

n-+42

1+ 1P(m—l—l,n+l),

and that the corresponding number for black balls is

mn +n —

1
p— Pim+1,n+4+1).

1+

Test your answer using the letters in ““gaaga.”
344, Show that the number of all possible permutations with repetitions of
up to m white balls, up to n black balls, and | red ball which include the red ball is

mn+m-+n

L+ m-+n-+4

P(m +2,n + 2).

345. Show that the number of all possible permutations with repetitions of
up to m white balls, up to 7 black balls, and 1 red ball is

(m + 1) + 1)
m+n+ 3

Pom+2,n+2)—1.

Check your answer using the letters in the word ‘““Ararat.”

346. I have 7 friends. In how many ways can I invite them for supper 3 at a
time on 7 occasions if no 2 of them are to meet in my house twice ?

347. In how many ways can I invite my 7 friends 3 at a time on 7 occasions
if the triples are to be different and no friend is to be left out ?

348. In how many ways can I invite my 7 friends 3 at a time on 7 occasions
if the triples are to be different and no friend is to be present on all 7 occasions ?

349, Show that the number of k-samples, & = 1,..., n of n objects, n > 2, is
E(en! — 1).

350. Show that each object appears in the totality of samples in Problem
349 El[e(n — 1)(n — 1)!] times.

351. Consider a series of 2n throws of a coin. Show that there are

14+ (Co)?+ - + (Caf = Cpa

series in which the number of heads at no time exceeds the number of tails.

352. In how many ways can we distribute 3z books among 3 people so that
the shares form an arithmetical progression ?

353. 'There are » different pairs of like letters. These 27 letters are ordered
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so that no 2 like letters appear together. Show that the number of such arrange-
ments 1s
n(n — 1)

1
= [(2n)! — -’132(2n — )+

2(2n — 2)! — ]

354. r different things are divided among n + p people so that at least n
of them get 1 or more things. Show that this can be done in

— 1
A2y —nn+p—1y + 22Dy p 2y -
ways.
355. Let ITE denote the number of ways of putting » different things into &

like boxes with no box left empty. Show that for n > 1
1 -2 +20013 — 311t 4 --- = 0.

356. There are m boxes containing », 2n,..., mn different objects, respectively.
In how many ways can we withdraw mn objects by withdrawing 7 objects from
each of the boxes ?

357. A basket contains 2n 4 r different apples and 2» — r different pears.
Show that for a given n the number of ways of selecting # apples and n pears is
largest when » = 0,

358. A convex 1000-gon contains in its interior 500 points. Of the 1500
points (1000 vertices and 500 interior points) no 3 are collinear. The polygon is
divided into triangles in such a way that all the 1500 points are vertices of
triangles and no triangle has any other point as a vertex. Find the number of
triangles.

359. Five people play a number of games of domino (two against two) in
such a way that each player is once the partner and twice the opponent of any
other player. Compute the number of games played and the possible distributions
of the players.

360. Find the number of closed plane polygonal lines issuing from a point 0
and consisting of 2n (possibly repeated) horizontal and vertical strokes of unit
length.

361. Each of n horizontal lines intersects each of 7 vertical lines. Compute
the number of closed 2n-sided polygonal lines whose sides consist of portions of
each of the # horizontal lines and each of the # vertical lines.

362. A factory produces rattles in the form of a ring with 3 red and 7 blue
balls. How many different rattles can be made (two rattles which differ by a
cyclic permutation or a flip are not regarded as different) ?

363. Consider a group of n people. Some of them know one another. Each
pair of strangers has exactly 2 common acquaintances and each pair of acquaint-
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ances has no common acquaintances. Show that each person has the same number
of acquaintances among the people in the group.

364. a + b points on a circle divide it into a & arcs. We mark a of the
points with an 4 and the remaining b points with a B. If both end points of an arc
are marked with an 4, then we associate with it the number 2. If both end points
of an arc are marked with a B, then we associate with it the number }. Finally,
if the end points of an arc are marked with different letters, then we associate
with it the number 1. Show that the value of the product of these numbers is
2a-b,

365. We number the rows of a chessboard 1 to 8 and mark the columns
a, b, c,d,ef, g, h. Next we assign arbitrary numerical values to the letters a, b, ¢,
d, e, f, g, h. Finally, we write on each square the product of its coordinates and
place 8 rooks on the board so that they cannot attack each other. Find the product
of the numbers associated with the covered squares.

366, The organizing committee of a mathematical competition consists of
11 people. The materials for the competition are locked in a safe. How many
locks should be placed on the safe and how many keys should be given to each
member of the organizing committee if each group of 6 committee members
should be able to open the safe and no smaller group of committee members
should be able to open it?

367. A chain consists of 60 links each of which weighs 1 oz. What is the
smallest number of links which must be opened so that the resulting pieces of
chain (including the opened links) can be grouped to give any weight from 1 oz
to 60 oz. ? Solve this problem if the pieces of chain are intended as weights for
a two-arm scale.

368. Find the number of pairs of integers x, y between 1 and 1000 such that
x? + y? is divisible by 49.

369. The sum of a 2-digit number and of the number obtained by reversing
the order of its digits is a perfect square. How many such numbers are there ?

370. Find the sum of all 4-digit numbers composed of the digits 1, 2, 3, 4, 5,6
and divisible by 3.

371. Find the sum of all even 4-digit numbers composed of the digits
0,1,23,4,5.

372, Find the number of integral solutions of the inequality

| 2| + || < 1000.

373. Given points 4,, 4, ,..., A on a circle. We construct all possible
convex polygons whose vertices are among the points 4,, A, ,..., 4,4 . We
separate these polygons into two classes one of which consists of the polygons
for which A4, is a vertex, and the other of the remaining polygons. Which class
contains more polygons ?
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374. A knight is placed on an infinite chessboard. Find the number of
positions which he can reach after 2z moves,

375. Given 1955 points. What is the largest number of triples of these points
with the property that any 2 triples have a point in common ?

376. Show that the number of digits in the number 123456 -+ 100,000,000
obtained by writing in succession the numbers from 1 to 100,000,000 is equal
to the number of zeros in the sequence 1, 2, 3,..., 10°.

377. How many 4-digit numbers in the range from 0001 to 9999 (inclusive)
have the property that the sum of the first 2 digits is equal to the sum of the last
2 digits ?

378. A school teaches 2n subjects. All the students receive grades of “very
good” or “good” in all the subjects, no two students have identical records, and
no student can be said to be superior to another student (we say of one student
that he is superior to another if there is no subject in which the grade of the first
student is poorer than the grade of the second student and there is at least one
subject in which the first student has a higher grade than the second student).
Show that the number of students in the school does not exceed Cy', .

379. Put M, = A}, , the number of r-samples of m objects, and N, = 47 .
Show that the value of Ay, 1s given by the sum obtained by expanding
(M + N)" and changing exponents to indices.

380. Find the coefficient of x® in the expansion of

(1 4 »2 — x3)%
381. Find the coefficient of x™ in the expansion of

(1+ 2 + (1 + 2+ 4 o+ (1 + 2

Discuss the case m < k and the case m > k.

382. Find the coefficients of x17 and x'8 in the expansion of (1 + &% 4 x7)%,

383. Compare the coefficients of x17 in the expansions of (1 + x2 — x3)1000
and (1 — x% | x3)1000,

384, Leta,,a,, a,,... be the coefficients in the expansion of (1 + x + x2)»
arranged in increasing powers of x. Prove that

(a) @@ — @8, + ag@y — + — dgn 185, = O,

(6) o —al+af — oo+ (—1)"7ah, = day + K1),

(¢) a, —na,_, + Cia,_y — -+ 4+ (—1)'Cray = 0, if r is not divisible by 3.
(d) o+ a + a,+ - = 33" + 1),

a + ay + a5 + - = 33" — ).
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387.

388.

389.

3900

(d)

392,

i+ Cr+Cht -
Cr+ Cr+Cr + -
Ci+Ch+Ch+ -

CotCrtCrd =
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Find the number of different terms in the expansion of

(01 + %+ -+ w)

Find the coefficient of x* in the expansion of

(1 4+ x4 a2+ - + am1)2

Show that
[ch — e
(CLF — G
Show that

Cr + 6C, + 6C, = n’,
1 4 7C% +12C% + 6C% = (n + 1)°.
Show that
1 4- 14C; 4- 36C2 4- 24C% = (n + 1)* — nt,
C! 4 14C% + 36C3 4- 24C% = nt.

Show that
1 —3C3 4 9Ch —27CE + -+ = (—1)"2" cos 22
CL—3C% +9C5 — - = (_')’:;;2”“ sin 227
Show that

+ 2 cos —)

3

=3
(2" + 2 cos =2 ),
( (n—|—2)7r)

2" 4 2 cos

b

l\)r—- w['—- ul'— wlr—t

n—1 n/2 bt
(2 -+ 27/2 cos 4 )
Show that for » > 2 and | x | << 1 we have

(1424 (1 —x)"<<2

201
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393, Show that form > n

Z": nn —1)-~(r—x+1) = m+1
Zomm—1)(m—x+1) m—n+1
and
z": CaCn  2n+1
&=0 C;I' N n+1
394, Show that
m m{m + 1) o, ommA41) - (mtn—1)
1 i 1-2 T 1:2n
1
+ n(n—|~ ) P n(n—i—ll) 2(n—|~m+l)
395, Show that
L S 2
mzl CZn—l n+1

396. Show that

iC,‘iIi_ n+q+ 1

ZC, G@+De+2)°

397. Show that

[ Yes B CETES
ZC, (g+1)g+2)(g+3)
398. Show that
(O + 2GR + O+ nCR =

399. Show that

1 1 1 1 (2n — 1!
=D DX _E T 23 3~ Wa=Dp
400. Show that
(ntr-1)! mn(n+r-3) n wn-1)(n+r-5)  al(n-1)

r! 1 (7-2) 1-2 (-4 AAm-r)t



401,
(a)
(b)
()

6)
(k)
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Compute the following sums:

Ca+2C5 +3C3 + -~
Ca+2Ch +3C5 + -
Ca +2C5 +3C, + -

Ca+3C, + 5C; + -

Ca —2C, +3C —

+nCq,

+ (4 1)Cy,
+ (. —1)C5,
+ (2n — 1)Cq,

c (=D + 1DC,

3C; +7C3 + 11C5 + -+ + (4n — 1)Cy1,

CL—2C% +3C3 — -

c G ca
1 Tt T3
(04 Cc2
2*3*4
cy G C2
i 2 T3

_I'" (_l)n—lnC: ’

n
+"‘+nc| =)
:fl
_i_....._l__n 2’
cr
DA

(CR)* — (CR)* + (o) — - + (—1)™(CT)™

402. Find the largest coefficient in the expansions of

{(a+ b+ o)°, (a+b+c+d

403. Express the coefficients Y, , Y, ,... in the expansion

(1 —4x) 12 =1 + YVyx + You? + -

in terms of the binomial coefficients. Expand (1 — 4x)!/2,

404, Show that the Y, in Problem 403 satisfy the relations
(a) Y + %Y be—l + lY Yﬂ—2 + + + 1 Y %Yn+1 ’
(b) Y ¥, +Y Y, +Y, Y, o+ +7Y,Y, =4
Y, Y, Y,\Y, . Y,Y, , Y,Y, Y.,
© Jornt 27 T3t T EED T aiz

203
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405. Each number in the number triangle

1
111
12321
1367631

-------

is equal to the sum of the number directly above it and its two immediate
neighbors (locations not occupied by numbers should be thought of as being
occupied by zeros). Show that beginning with the third row each row contains
an even number.

406, The first row of the number triangle

0123------ 1957 1958

--------------------

consists of the numbers 0, 1,..., 1958. An element in any other row is the sum of
its 2 closest neighbors in the row above it. Show that the element in the last row
of the triangle is divisible by 1958.

407, Consider the Fibonacci numbers #, : 4y = 0,4, = 1, 4, = 1, 43 = 2,
uy = 3, u; = 5, and so on (note that we started the sequence with 0 and 1 and not
with 1 and 2 as in Chap. VI). Show that:

(a) Forall mand n, w,,,, = sy Uy + Uplipyy -
(b) For all m and n = km, the number u,, is divisible by u,, .

(¢) Two neighboring Fibonacci numbers are relatively prime.

408, Find the greatest common divisor of the 1000th and 770th terms in the
Fibonacci sequence.

409. Does the set of the first 100,000,001 Fibonacci numbers contain a
number which ends in 4 zeros?

410. Show that the sum of 8 successive Fibonacci numbers is not a Fibonacci
number.

411, Show that:

(a) u2 + u4 + + u2ﬂ - u2n+1 — 11
(b) u, + 3 + -+ + Ugn_y = Usn
(© u+us+ - 4 uph = Uty
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(d) w1 = Uplhnye + (—1)7,

(€) wyuy + ugtty + -+ + Ugp_yUp, = Upy,

() sty + ugty + -+ + Ugahpngs = Ugnrs — L,

(8) mup+(n— Dy + (n — ug + -+ + 2up g + sty =y — (2 + 3),

(h) ua‘l“”e‘l"'“‘l"uan:ltg'ﬁzz—;l",

() gy = Upyy + 0y — 25y

412, Show that every natural number N can be written as the sum of
different Fibonacci numbers such that no 2 summands are neighbors in the
Fibonacci sequence.

413. Let p = q = r be integers such that p < g+ rand p + ¢ r = 2s.
Show that the number of ways of dividing p black balls, ¢ white balls, and r red
balls between 2 people so that each person gets s balls is equal to

s+ 1— 3P+ ¢+ 7).

414, Show that if ¢ + r << p, then the answer in Problem 413 is increased
by ¥(p — sXp — s — 1).

415. pq + r different objects, 0 <{ 7 < p, are divided among p people as
evenly as possible (this means that each person gets ¢ or ¢ + 1 objects). Show
that this can be done in

r (pg+7)
G+ yray

ways.
416, Compute the sum

m in iy i1
i=li,_ =1 d1=1 ig=1

417, Prove the identity

Com = ZP(/@1 gy Ry s 0 — Ry — oo — Ry 4 1),

where the sum extends over all nonnegative integral solutions of the equation
ky + 2k, + - + mk, = m.
418. Find the general solution of each of the following recurrence relations:
(@) anyz — 7854, + 124, =0,
(b) Qpto _I'“ 3a'n+1 - loan = 0’
(C) Apye — 4a'n+1 + 13a, =0,
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(d)
(e)
6]
(g)
(h)

419.

(a)
(b)
(c)
(d)

420,

421.

422,

4230

425 *

426.

VIII. Problems in Combinatorics

dnye + 9a, =0,

Anyy + 8anyy + da, =0,
Anrz — Vpye + 26a‘m+1 24a, = 0,

Qnia + ?’an+2 + 3a'n+1 + a, =0,

Anyg + 4a, = 0.

Find a, , given the recurrence relation and initial terms

Ante — S8pyq + 6a, =0, a, =1, a, = —7,

Aprg — 4, + da, =0, a =2, a — 4,

Apig + Qny + Gn =0, a = —1% ‘12:_%3

[ 9a'n+2 + 26a'ra+1 24(1“ - 0) a, — 1: ay, = _3, a3 = “—'29.

Find a sequence such that @, = cos a, a, = c0s 2a, and

Apyg — 2 €08 0lyyy + ap, = 0.
Show that the sequence with general term a,, = 7* satisfies the relation

Apik — CkanH: 1 + Ckan+k—2 + o+ ( 1) = 0.
Find a sequence such that
Anig + 285y — 8a, = 2%

Use the identity (1 4 x)? (1 + )% = (1 + x)?»~*~1 to show that

2 (—1)'C G = Coiey *

=0
Use the identity {1 — x)™ 1 (1 — x) 21 = (1 — x)™ 92 to show that

Z 1’—3 Cm1

Use the identity (1 + x)* = (1 — x®)* (1 — x)~® to show that

Z (—1)3 ::+k—2sc:c+1 = C::+1 .
=0

Use the identiy (1 4+ x)* (1 — x2)™® = (1 — x)~" to show that

k—2s,18 _ k
Z Cﬂ Cn+s—1 - Cu+k—1 '

=0

* Here and in the sequel, the summation extends over all nonnegative values of s for
which the left-hand side of the inequality is defined.
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427, Use the identiy (1 — x2)®* = (1 + x)~#-1(1 — x)~*-! to show that

Z (—1)°Crian—sCois = Ca’:+k .

3=0
428. Use the identities

X

= 1= ()] = a 29

and

) S

to show that
>, CorsCogim ™ = 2"
=0
and
> (—1)CCET, = 2°C
3=0

429, Show that

Z C;HCzpﬂs — Zm_lzp_?;:ﬁ Cfﬁw_l .
=0

430. Use the identities
2x
(1 — x)*2? [1 + )2] = (1 4 x3)*

to show that

Y (—1)°Chy s Comtint 2 =
3=0
Z (_1 ’C;+s— Cg:nn;239+s—123 = (—l)mqn+m—1 ’
=0
Y ()G =0,
=0

> (C1)CCEL2 = Cy,

§=0
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and then show that

. ) e (p +2m— 1)
sgo Cgp+2mcp+m—s =2° (p + m) p! (2111)' ’
. . o (p + 2m)!
L CllinnCoims = 2700 +2m + D) v 20

2s—1 P _ A2m—1vp
Z C2p+2mcp+m—s =2 C:D+2m—1 ’
s=1

25 P __ N2mpevp
Z sz+2m+lcp+m—s - 2 Cp+2m .
$=0

431, Consider the formulas
[(1 4 x)? &= (1 — x)?]2 = (1 + «? 4 (1 — x)*? £ 2(1 — »®)?,
[(1 4 %)? + (1 — xP][(1 4 ) — (1 — x)*?] = (1 4 x)*? — (1 — )2,

for positive and negative values of p and show that

2 Y, CrCEE — - (—1)"Cy,

3=0

2 Z Cis+1czm—2s+1 — Cg;n+2 + (_l)mCzHl,

5=0

28 2m—28+1 ___ 2m+1
2 Z Cﬂ Cp - Cz:o ?

s=0

P P _ 2p+1 P
2 Z Cp+2scﬂ+2’m—2s - C2p+2m+1 + Cp+m »
5=0

—1 -1 _ 2p—1 P
2 Z Cp+2scp+2m—2s - C2p+2m+1 - Cp+m ]
=0
P P _ 29+1
2 Z C?+2st+2m—2S+1 - C2p+2m+2 *
5=0

432, Consider the expression

(1 + 97 £ (1 — 91 + 92 & (1 — )7
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for all combinations of signs and show that

2 Z CﬁilC'im“” = nglﬂ + (—1)"‘C§? ’

5=0

2%, CCE = it — (—1ynC,

$=0

2y, CERCE — ot 4 (—1yney,

5=0

25+12m—-25+1 _ 2m+-2 mevm+1
2 Z Cﬂ+1 Cm - C219+1 + (_1) Cp ’
$=0
p—1 P . 2y D
2 Z Cp+23—1cp+2m—2s - C239+2m + Cﬂ+'m »
$=0
p-1 ? _ 29 ?
2 Z C:p+23—lcp+2m—2s+1 - C2p+2m+1 + Cp+m H
5=0

P—1 P _ 2D P
2 Z Cp+zscﬂ+2m—2s - C'2zJ+2'm+1 - Cp+m

$=0

=1 __ 2y P
2 Z Cﬂ+23 p+2m—2s+1 — C2p+2m+2 - Ca:+m+1 -
s=(

433. Use the relation

(1- 1)"' (1 — w1 = (D™

— m—n—1
X xm (1 x)

to show that

2 (=) CR™Ch, = Cryy

5=0

434, Show that

for m # n,
for m = n.

> e = f .

§=0

435, Use the relation
(1— )y (1 —atn = (1 4 2+ - + at-)n

to show that

_ 0 for m > hm — 1
__1\Syn—-1 5] — ) »
2 (=1)°CraCs 1, for m=h — 1.

5=0

209
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436. Use the relation

(1 — syl — gy = L2 T

1 —«
to show that for m > hn

2 (=1)°Ch_aCh = A"

§=0
437, Use the relation
(1 + x):l:aJ (1 — x):l:z: = (1 — x2);|:11
to show that

3 (—1)'Cyes =

§=0

,(—l)mmC;',nlz, for
0,

for

1\, P __ (_l)mlzcz‘-ﬁm/z) ’ for
;0( 1) Cr+m—sCsp+s — ,0’ fOI‘

438, Show that

2 (=D)ICY =

§=0
439. Denote the expression

aa + 1)@ +2) - (a+n—1)
by (a),, ; show that

m even,

m odd.

m even,

m odd.

,(—1)"‘/ XC™%  for m even,
0, for m odd.

(a +b), = Zn: Crla +m)y (b —m + 1), .

m=0



Answers and Hints

1. By the rule of product, the number of roads is 5 - 3 = 15.
2. By the rule of product, the number of choices is 1002 = 10,000.
3. 20-

4. 6.

5. 4.

6. 48.

7. 25;20.
8. 480; 437.

9. 1024; 4032.

10. We can choose the black square in 32 ways. Then we delete the row and
column which share this square. We are then left with 24 white squares to choose
from. Thus the pair of squares can be chosen in 32 * 24 = 768 ways.

11. By the rule of product, the number of ways is 12 -+ 9 - 10 = 1080.
12. 65 =30.
13. 3-7-7=147.

14. We can buy a selection of 3 “one-novel”” books or a selection of 1 “two-
novel” book and 1 “one-novel’”’ book. The first can be donein 6 - 3 - 4 ways. The
second can be done in 5 -4 4 7 - 6 ways. It follows that the purchase can be

211
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effectedin6-3-4 + 5-4 4 7 -6 = 134 ways. (Our argument makes use of the
rule of product and the rule of sum.)

15. We have the additional possibility of buying a copy of the combined
edition of “Rudin’’ and ‘““Fathers and Sons’ and a copy of *Nobleman’s Nest.”’
This can be done in 3 +3 =9 ways. Hence the present total of choices is

134 + 9 = 143.

16. In the first case: for then Jill can make 11 - 10 = 110 choices. In the
second case, she can make only 12 - 9 = 108 choices.

17. 6 -8 -10 = 480. If the first 2 tops fall on the side marked with a one,
then the third top can fall in 10 ways. If the first and third tops fall on the side
marked with a one, then the second top can fall in 8 ways. Finally, if the last
2 tops fall on the side marked with a one, then the first top can fall in 6 ways. The
apparent total of 6 + 8 + 10 possibilities must be diminished by 2, for the
possibility of all 3 tops falling on the side marked with a one has been counted 3
times. It follows that the number of different outcomes is 22.

18. Since the order of the colors is immaterial, the number of choices is

¢ = 10.

19. Here the order of the colors matters, so that the number of flags is
A% = 60.If one of the stripes is to be red, then the number of flags is 3 - A2 = 36.

20, A2 = 20 dictionaries.
21. 43— A2 =T0.

22, This is a matter of counting the number of 4-arrangements with
repetitions of elements of 13 kinds. The number of such arrangements is 13¢ =
28,561. If no two of the cards can have the same value, then our problem reduces
to counting 4-arrangements without repetitions of elements of 13 kinds. The
number of such arrangements is A%, = 17,160.

23. In this case, an arrangement is determined as soon as we have selected,
say, a diamonds-card and a spades-card. Thus the number of possible arrange-
ments is 132 = 169.

24. The number of choices is 300 + 300 - 299 + 300 - 299 - 298 =
26,820,600.

25, 'The relation ““is the neighbor of’ is preserved by cyclic permutations and
reflections. In the case of 4 people, we have 2 - 4 = 8 such transformations.
Since the number of permutations of 4 people is 4! = 24, the number of
different seating arrangements 1s 24/8 = 3. For 7 people, the corresponding
number is 7!/14 = 360. For = people, the corresponding number is (n — 1)!/2.
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The number of ways of seating 7 people so that certain 2 people are neighbors
is twice the number of ways of seating 6 people (since the neighbors can
exchange seats), that is, 5! = 120. Similarly, the number of ways of seating 7
people so that a certain person has certain two neighbors is 4! = 24.

26. Consider the number of ways of making up, say, the team consisting of
1 boy and 3 girls. The boy can be chosen in C3 = 3 ways and the 3 girls can be
chosen in C3 = 10 ways. By the rule of product, a team of this kind can be made
up in 3 - 10 = 30 ways.

27. 'There are n* ways of distributing » different objects in % different boxes.
In this case, the number of ways 1s 3% = 729.

28. By the rule of product, the number of waysis 7 - 9 = 63.

29. One person can choose 2 books in C? = 21 ways, and the other in
C3 = 36 ways. Hence the number of possible exchanges is 21 - 36 = 756.

30. We group the 5! unrestricted arrangements of speakers in pairs which
differ only in the order of speakers 4 and B. In each pair there is exactly 1
acceptable arrangement. Hence the number of acceptable arrangements is

51/2 = 60.

31. In this case, the pair 4, B can be regarded as a single speaker, so that the
number of arrangements is 4! = 24.

32. 'There are 2 ways of assigning chairs for men and women. Following such
an assignment, the men can be seated in 5! ways and, subsequently, the women
can be seated in 5! ways. This gives 2(5!)* = 28,800 ways.

33. The number of arrangements is reduced by a factor of 10 and so is equal

to 2880.

34, The number of ways of choosing 10 cards out of 52 is Cig . The number
of selections without an ace is C;y . Hence the number of selections with at least 1
ace is Cag — C19. The number of selections with exactly 1 ace is C;Cy - The
number of selections with at least 2 aces is Ciy — Cjo — 4C}, . The number of
selections with exactly 2 aces is C;Cy, (the 2 aces can be selected in C3 ways and
the remaining 8 cards can be selected in Cj, ways).

35. The number of signals is 3™ (see Problem 27).

36. We associate with every set of teeth a sequence of 32 zeros and ones (the
presence or absence of a tooth in a certain position is denoted by a 1 or a 0 in that
position). Since the number of such sequences is 222, this is the maximal number
of inhabitants in the country.

37. First we choose 1 of the 3 “no preference” passengers. This can be done
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in 3 ways. We seat this passenger to face the locomotive. This determines a
seating arrangement of the passengers up to a permutation of each of the 2
groups of 5 passengers. It follows that the number of seating arrangements is

3(51)2 = 43,200.
38, A% = 3024.
39. C%, = 2,598,960.

40. 'There are 26 - 10* licenses with 1 letter, 262 - 104 licenses with 2 letters,
and 26% - 10¢ licenses with 3 letters. By the rule of sum, there are at most
(26 4 262 + 26%) - 10 = 18,278 - 10* licenses.

41, 'The 2 “apple days” can be chosen out of 5 days in C; = 10 ways.
2. C;

min *
43. P(2,3,4) = 1260.
44. Since the oranges are different, the number of ways is 45 = 6720.

45. Each orange can be given to each of the 8 sons. Hence the number of ways

is 85 = 32,768.
46. P(2,2,2,1,1,1,1,1); PG3,1,1,1,1,1); P(2,2,2, 1, 1, 1).
47. CL = 27405; A%, = 657,720.

48. P(2,2,2,1,1) = 5040.

49. The 6 subscribers can be selected in C¥ ways. There are 6! permutations
of 6 people and each such permutation determines 3 ordered pairs with the
members of each pair ordered. Since neither type of order is relevant, we must

divide C% - 6! by 28 - 3! = 48. This yields the answer n!/[48(n — 6)!].
50. Ci5 = Cy'; Clo = Cir 5 Co -

51. A selection can include 2, 3, or 4 women. The number of selections
corresponding to each of these three possibilities is C3C7, C3C3 and CiCE.
Therefore the required number of ways is equal to C3Cs + C3C? + C4C? = 371.

52. Our numbers must end in 12, 24, 32, 44, or 52. Each of the first 2 digits
can be chosen in 5 ways. This gives a total of 52 - 5 = 125 numbers.

53. Each of the n passengers has m choices. Hence the number of ways is m™.
If we are concerned only with the number of passengers who get off at each stop,

then the number of ways is Cj_; .

54. Since aand b appear together, we can think of the pair as a single symbol.
Since we can interchange the positions of a and b, we obtain 2(z — 1)! permuta-
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tions with a and b together. It follows that there are n! — 2(n — 1)! permutations
in which a and & do not appear together. Similarly, there are n! — 6(n — 2)!
permutations in which g, b, and ¢ do not appear together. Finally, by the principle
of inclusion and exclusion, the number of permutations in which no two of the
three symbols a, b, ¢ appear together i1s n! — 6(n — 1)! + 6(r — 2)!.

55. The 3 judges can name 10? triples of winners, 43, = 720 triples will
include 3 different athletes. It follows that in 280 cases the triples will include the
same athlete at least twice. The required fraction is therefore 0.28.

56. 3% = 8l.

57. We can turn a necklace over and permute its beads cyclically without
producing a different necklace. Hence the number of different necklaces is
7!/14 = 360.

58. 'The necklaces differ by the number of small beads contained between
the two large beads. Hence the number of different necklaces is 3.

59, The number of possible pairs of letters is 262 = 726 << 2000.

60. A, = 604,800; C3, = 120. The 2 girls can choose partners in 45 ways.
The remaining 5 boys can choose partners in A4} ways, so that the number of
possible outcomes is 4345 = 282,240. The number of different trios without
partners is now Cs = 56.

61. C3CiCH; CiCH .

62. The 4 girls can be chosen in Cj, ways. Then the boys can be chosen in
Ajls ways (now order matters!). Hence the number of ways is

C,A% — 17,417,400.

63. If we ignore restrictions, then each chicken may be included in the
selection or left out. Of the 22 — 8 possible ways of assigning the chickens, 1 is
not acceptable (no chicken included in the selection). This leaves 7 acceptable
ways of assigning the chickens. Similarly, there are 2 — 1 = 15 acceptable ways
of assigning the ducks, and 22 — 1 = 3 acceptable ways of assigning the geese.
It follows that there are 7 - 15 - 3 = 315 acceptable selections.

64. 'This can be done in P(m, n, p) = (m + n + p)!/m! n! p! ways.

65. 'The black-bound books can be permuted in m! ways and the red-bound
books can be permuted in n! ways. This gives m! n! arrangements in which the
black-bound books come first. If the black-bound books are together, then we can
place them in » | 1 ways between red-bound books. This gives a total of
m! nl(n 4+ 1) = m!(n 4 1)! ways of placing the set of black-bound books.
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66. Each person can be included in the detachment or not. If we exclude the
empty selection, we have 215 — 1 = 32,767 possibilities.

67. Each prime p; can enter a divisor of ¢ with one of the o + 1 exponents
0, 1,..., o . By the rule of product, the number of divisors is (e; + 1) *** (o, + 1).
To compute their sum, we consider the expression

(1o 427 -+ (14 pu -+ 257)-

If we remove brackets in this product, then we obtain a sum in which each
divisor of g appears exactly once. If we use the formula for the sum of a geometric
progression, then the above product, and therefore also the required sum of the
divisors of ¢, is seen to have the value

Pfit1+1 - 1 . ;ﬂ+1 . 1

Pl_l Pn_l

68. First we place a single half-dollar coin in each batch. The remaining 7
half-dollar coins can be distributed in Cf; = 330 ways (see p. 171).

69. We add 4 dividers to the 20 books and permute these 24 objects. The
number of resulting permutations is 24!/4!. Each of these permutations deter-
mines a particular arrangement of the books.

70. Reasoning as in the preceding problem, we obtain the answer 8!/3! =

6720.

71. Since we are only concerned with the number of votes cast in favor of
each issue, we need only compute the number of ways of distributing 30 like
objects in 5 different boxes, This number is P(30, 4) = 46,376.

72. 'There are 3!2 ways of binding 12 books in 3 colors of cloth. In 3 - 212
cases, the books are bound in at most 2 colors of cloth, and in 3 cases the books
are bound in just 1 color of cloth. By the principle of inclusion and exclusion,
there are 312 — 3 - 212 | 3 ways of binding the books in all 3 colors of cloth.

73. We separate the 26 letters into 6 nonempty batches by means of 5
dividers. The 5 dividers can be placed in the 25 spaces between the 26 letters.
This gives Cj; ways of placing the dividers and so C; ways of making a particular
arrangement of the letters into 6 words. Since the number of permutations of 26
letters is 26! we obtain 26!C2; ordered arrangements of 6 words. Since the order
of the words is immaterial, there are 26!C5./6! ways of making up 6 words.

74. Twelve people can be selected out of 17 in C}? ways. A certain 2 people

enter Cly of these selections. Hence the number of admissible selections is
12 10
Cl'? - C15 :
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75. There are P(5,6,7) permutations of the precious stones. A bracelet
is not affected by cyclic permutations or by being turned over. Hence the required

number is P(5, 6, 7)/36 = 18!/(36 - 5! - 6! - 71).

76. There are 3 ways of choosing stones of 1 kind, 3 - 2 = 6 ways of choosing
stones of 2 kinds, and 1 way of choosing stones of 3 kinds. This gives a total of
10 ways.

77. 'The cups can be set in 43 ways, the saucers in 45 ways, and the teaspoons
can be set in A3 ways. This gives 434343 = 172,800 ways of setting the table.

78. If the man invites £ women, then he must invite 6 — 2 men. But then
his wife must invite 6 — &2 women and % men. By the rules of sum and product,
the number of ways is

5
Y (CHHCE™)? = 267,148.
k=0

79. Of the people who have no seating preference, 0, 1, 2, 3, or 4 can be
seated on port side. If the selected crew contains k “no preference” people, then
we can select 4 — & people who prefer port seats. Then we are left with
12 + (9 — &) people out of whose number we must choose 4 starboard members
of the crew. This gives CEC{5*Cs,_. choices. Summing over &, we obtain the
answer

4 ~ 9! 10! & (21 — &)!
kovd—k 4 _
2 CCi"Ca e = a0 go RO — B4 —kR)I(6+R1T—kR)

k=0

80. The number9 can be partitioned into 3 different summands in 3 ways:
9=14+24+6=1+3+5=2+ 3+ 4. Four drawings will yield a sum
less than 9: 1 4+24+3=6,1+24+4=7,1424+5=1+4+3+44=28.
Since the number of different drawings is C}, , there are C3) — 4 drawings with
sum =9,

81. First we select 4 cards of different suits. This can be done in 134 ways.
Two additional cards of different suits can be selected in C? - 122 = 864 ways.
Combining these ways with the ways of selecting the first 4 cards and taking
into consideration the possibility of interchanging cards of the same suit, we
obtain 216 - 134 ways. T'wo cards of the same suit can be selected in 4CF, = 264
ways. Again combining these ways with the ways of selecting the first 4 cards and
again bearing in mind the possibility of interchanging cards of the same suit,
we obtain 88 - 134 ways. Hence the answer to our problem is 304 - 134,

82. On the first day we have C5, = 210 choices, on the second day we have
Cj, — 1 = 209 choices, and on the third day we have C§, — 2 = 208 choices.
This gives a total of 210 - 209 - 208 = 9,129,120 choices.
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83. Since C3 = 20, each set of 3 friends must be invited exactly once in the
20-day period, that is, two ways can differ only in the order of the various trios.
It follows that the number of ways is 20!.

84. Each man can choose his place of employment in 5 ways and each woman

can choose hers in 4 ways. It follows that the people in question have 5 - 42 =
2000 choices.

85. In the first position we can write one of the 26 letters and in each
successive position we can write one of 25 letters. This gives 26 - 25 =
10,156,250 words.

86. In the first case award winners can be chosen in C§; ways, and the prizes
can be awarded to a group of 6 in P(3, 2, 1) ways. By the rule of product, the
number of ways of awarding the prizes in this case is C5,P(3, 2, 1). In the second
case, the first book can be awarded in C3, ways, the second book in Cy, ways, and

the third book in Cj, ways. Hence in this case the prizes can be awarded in
C3,CaCao Ways.

87. We associate with the domino (p, ¢) the domino (n — p,n — ¢q). If
p+g=mn—r, then (n — p) 4+ (n — q¢) = n + r, which shows that there are
as many dominos with face-sum z — 7 as there are dominos with face-sum# + 7.
The number of dominos with face-sum # — 7 is (n — r 4+ 1)/2 for n — r odd,
and (n — r 4+ 2)/2 for n — r even; in both cases the number of dominos is
E[(n — r + 2)/2], where E(x) is the integral part of x. There are altogether C2

n+l
dominos.

88. The statement of the problem implies that men and women alternate.
Hence the number of seating arrangements is 2(7!)2.

89, There are 8 ways of choosing 3 horses, one each from the pairs 4, 4;
B, B’; C,C’. There are C3, = 120 ways of choosing the additional horses.
Finally, there are 6! ways of harnessing a set of 6 horses. This yields the answer
8- 120 - 6! = 691,200.

90. The consonants can be selected in C; ways and the vowels can be
selected in C? ways. The 7 letters can be permuted in 7! ways. Hence the number
of words is C3C?3 - 7!. If no two consonants can appear together, then the word-
pattern is CVCVCVC and the number of permutations is 3!4!. Hence in this
case the number of words is C3C3 - 3! 4!.

91. By the principle of inclusion and exclusion, the number of workers is
6 +-6+7—4—3—2+1=11. The number of people who know only
Russian is 6 — 4 — 2 + 1 = 1. The number of people who know only French
is7—3—241=23.
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92. By the principle of inclusion and exclusion, the number of people who
took along pies was 92 — 47 — 38 — 42 4 28 4 31 4 26 — 25 = 25.

93. The 5 pairs of men can be selected in 10!/[(2!)® - 5!] ways (order within
a pair as well as the order of the pairs are irrelevant). The 5 pairs of women can be
subsequently selected in 10!/(2!)® ways (now the order of the pairs matters).

This gives (10!)%/(210 - 5!) ways.

94, Consider the boat with the married couple. The other 2 occupants of
this boat can be selected in 9% ways. The occupants of the other 4 boats can be
selected in (8!)%/(2% - 4!) ways. Hence the required number of cases is

(O1)2/(28 - 41).

95. 'There arise two possibilities. If both married couples are in the same
boat, then the remaining people can occupy the remaining 4 boats in (8!)%/(28 - 4!)
ways. If the 2 married couples are in different boats, then these 2 boats can be
filledin (43)? ways and the remaining 3 boats can be filled in 6!/(28 - 3!)ways. The
total number of cases is 17(8!)%/(28 - 4!).

96. 74— 7 = 2058.

97. Let the number formed by the first 3 digits be x. Then the number
formed by the last 3 digits can take on the values 0, 1,..., 999 — x, that is, 1000-x
different values. Since x varies from 100 to 999, it follows that in order to obtain
the answer to our problem we must add all the numbers from 1 to 900. The result

is 405,450.

98. The squares for the white checkers can be selected in Cj5 ways. Then the
squares for the black checkers can be selected in Cj; ways. The required number
of ways is C35Cyp -

99. We separate the P, permutations of the word “Jupiter” into classes
such that two permutations in the same class differ only in the order of the vowels.
Each of these classes contains exactly 1 permutation in which the 3 vowels
appear in alphabetical order. Since the number of classes is P,/P; = 840, this is
also the number of required permutations.

100. 'The 4 letters “a’’ appear together in 4 - 3! = 4! permutations. Since
the number of all permutations is P(4, 1, 1, 1), the answeris P(4, 1,1, 1) — 4! =
186.

101. We can think of the pair of letters ‘““op’’ as a single symbol. Hence the
number of required permutations 1s P(2,1, 1, 1, 1) = 360.

102, The letters other than *“s” can be permuted in P(1, 4, 2) ways. The 4
letters ““4”’ can be placed in 8 locations. This implies C; choices. It follows that the
number of required permutations is P(1, 4, 2) Cj .
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103. In this case, the vowels as well as the consonants can be independently
permuted in P(2, 1, 1) = 12 ways. For every arrangement of the 4 consonants
there are 5 places for the 4 vowels. Hence there are C; = 5 sets of locations for
the vowels. Hence the number of required permutations is 5 - 122 = 720.

104. We write the vowels in the order in which they appear. Then there
are 5 places for the letter ““b.”” Once this letter has been written down, there are
6 places for the letter “‘v.”” After that there are 7 places for the letter ““c.” Hence
the total number of ways is 5-6 - 7 = 210.

105. Reasoning as in the preceding problem, we obtain the answer 4],/P; =
277,200 (one must bear in mind the fact that the letter “‘1”’ appears in our word
3 times).

106. First we fix the order of the 2 vowels (2 ways). Then we place 2 of the
consonants between the vowels (43 = 12 ways). The first of the 2 remaining
consonants can be placed before or after the vowels (2 ways). After that there are
3 positions for the second consonant. In all there are 2 - 12 - 2 - 3 = 144 ways.

107. We select 3 of the 5 consonants and place them in the required positions
(4% ways). The remaining 5 letters are placed arbitrarily in the remaining 5
positions (5! ways). This gives 5143 = 7200 ways.

108, C2C; = 30; C;C; = 12.
109. P(3,1,1,1) — 4! = 96 ways (see Problem 100).

110. First we place the consonants (3! ways). This leaves 4 locations for the
3 letters “o,”” and so 4 ways of placing these 3 letters. In all there are 24 ways.

111. A selection can include 0, 1,..., 4 letters *‘a,” that is, ““a’’ can enter a

€1

selection in 5 ways. Similarly, “n” can enter in 3 ways, “e”’ in 5§ ways, “y”’ in

(19 ]

3 ways, “f”’ 1n 3 ways, “o” in 7 ways, in 3 ways, “‘t” in 5 ways, and “h” in
3 ways. This gives a total of 5-3-5-3-3-7-3-5-3 = 212,625 selections.

[YPR}
r

112. The number of selections in which all 3 letters are distinct is C; = 84.
The number of selections in which exactly 2 letters are distinct is 9 - 8§ = 72.
The number of selections in which all 3 letters are the same is 4. This gives a total
of 84 4+ 72 + 4 = 160 selections.

113. Iforderis taken into consideration, then there are 43 4 343 4 4 = 724
selections.

114. Since the order of the vowels and consonants is fixed, we can only
choose, say, the 3 positions of the vowels. This can be done in C3 ways.

115. In case of the word *“‘triannual’”’ we must start and end with a consonant.
The consonants can be permuted in P(2, 1, 1, 1) ways and the vowelsin P(2, 1, 1)
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ways. In all, there are P(2,1,1, 1) P(2,1, 1) = 720 ways. In case of the word
“samovar,” the corresponding count is P, - P(2,1) = 72.

116. The 3 letters ““a” can occupy any 3 of 6 locations. This gives Ci
acceptable permutations. If no two letters ‘‘a” can appear together, then our
problem is that of putting 3 like things in 4 (different) boxes (formed by the
consonants). The latter can be done in C3 = 4 ways.

[} ]

117. There are 180 permutations of the word ‘‘zigzag.” The letters “z” are

[ 5]

together in 60 permutations. The letters “g” are together in 60 permutations.
The letters ““z’’ appear together and the letters “g” appear together in 24
permutations. By the principle of inclusion and exclusion the number of
admissible permutations is 180 — 60 — 60 { 24 = 84. In case of the word

“Tartar,” the number of admissible permutations is

90 —30—30—30+ 124 12 4 12 — 6 = 30.

118. There are 3 selections which include the letters “‘t,”” “‘a,” and “r
Likewise, there are 3 selections which have exactly 2 distinct letters. This gives
a total of 6 selections. The number of 4-digit numbers composed of the digits in
the number 123,123 is 3P(2, 1, 1) + 3P(2,2) = 54.

)

119. By the principle of inclusion and exclusion,
10 —4-9% 1 6-8 —4-7% 4 68 = 23,160
of our numbers include all the digits 1, 2, 3, 4. Also,
44 42 + 43 | 4% | 45 | 4% = (4" — 4)/3 = 5460

of our numbers contain only the digits 1, 2, 3, 4.

120, Each of the digits 1, 2, 3, 4 appears in each column P,;/4 = 6 times.
Hence the sum of the units is 6(1 + 2 4+ 3 4 4) = 60, the sum of the tens is
600, and so on. Hence the required sum is 60 + 600 + 6000 + 60,000 = 66,660.

121. Here the number of permutations is 12, the digits 1 and 5 appear in each
column 3 times, and the digit 2 appears in each column 6 times. Hence the sum
of the units is 314354 62 =30. But then the required sum is
30 -+ 300 + 3000 + 30,000 = 33,330.

122. The sum is 11,110.
123. The sum is 16,665.

124, If we set aside the restriction that no number starts with 0, then we
obtain the sum 2,666,640. The sum of the numbers which begin with a 0 is
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66,660 (see solution of Problem 120). Hence the answer to our problem is given
by the difference 2,666,640 — 66,660 = 2,599,980.

125. Using the digits 8 and 9, we can make 2% k-digit numbers. It follows
that the number of required numbers is 3°%_, 2% = 126.

126. Reasoning as in Problem 125, we obtain the answer 3¢ _; 3* = 1092.
127. Since the first digit must not be 0, we obtain 2 33 _; 3* = 728 numbers.

128. Each of the digits 1, 2, 3, 4 appears in each column 42 = 16 times.
Hence the sum of the units is 16(1 + 2 + 3 4 4) = 160, the sum of the tens is
1600, and the sum of the hundreds is 16,000. The required sum is 17,760.

129, 'The first required sum is 3,999,960. To compute the second required
sum, note that each digit appears in each column Ajg times. Hence the sum of the
units is Ag(1 + 2 + -+ 4+ 9) = 75,600 and the required sum is 839,991,600.

130. The last digit can be 3 or 9. The remaining 3 digits can be permuted in
3! ways. This gives a total of 12 odd numbers. Similarly, the total of even numbers
is also 12.

131. Thereare C3 = 20 sets of places for the 3 odd digits. Once the positions
of the odd digits are fixed, the positions of the even digits are also fixed. Then
each of these positions can be filled in 5 ways (for the time being the digit 0 is
allowed in the first position). This gives a total of 20 - 5% numbers. Of these,
10 - 55 begin with the digit 0. Hence there are 20 - 5% — 10 - 55 = 281,250
required numbers.

132. C?: 5% = 312,500 numbers.

133. 'The first digit can be chosen in 9 ways, the next 4 digits can be chosen
in 10 ways, and the last digit (necessarily even) can be chosen in 5 ways. This
gives 9 - 104+ 5 = 450,000 numbers. There are 499,999 admissible numbers
from 1 to 999,999,

134. Apart from the digit 0, the remaining digits yield one of the following
sequences: 3;2,1; 1, 2; 1, 1, 1. It remains to distribute zeros so that the first digit
is not a zero. For 3, this can be done in 1 way. For each of the sequences 2, 1 and
1, 2 this can be done in 9 ways. For 1, 1, 1 this can be done in C} = 36 ways.
Hence the required total of numbers is 1 + 9 4+ 9 4 36 = 55. In solving this
problem for the numbers from 1 to 9,999,999 we assign locations to the nonzero
digits. For 3 this can be done in C}, ways, for each of the pairs 1, 2 and 2, 1 this
can be done in CF) ways, and for 1, 1, 1 this can be done in C}, ways. Hence in this
case we obtain C}, + 2CZ + C3 = 340 admissible numbers.

135. ‘The first position can be filled in 9 ways, the second in 9 ways, the third
in 8 ways, and so on, Hence there are 9 * 9! required numbers.
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136. There are £(1000/5) numbers from 0 to 999 which are divisible by 5
(E(x) is the integral part of x), 1 + E(1000/7) numbers which are divisible by 7,
and 1 + E(1000/35) numbers which are divisible by 35. By the principle of
inclusion and exclusion there are

1000 — E(@) - 5(1970—0) +E (1%)) = 686

numbers in the indicated range which are not divisible by either 5 or 7.

137. Reasoning as in Problem 136, we find that there are 228 admissible
numbers.

138. There are 729 numbers in this range which do not include the digit 9,
so that 1000 — 729 = 271 numbers include the digit 9. There are exactly 27
numbers in which the digit 9 enters exactly twice (099, 909, 990, 199, and so
on). The digit O appears in 1 one-digit number, in 9 two-digit numbers, and in
171 three-digit numbers for a total of 181 numbers. The digit O appears twice in
9 numbers. Both of the digits 0 and 9 appear in 36 numbers (8 + 8 + 16 = 32
three-digit numbers in which the third digit is not 0 or 9, and the 4 numbers 90,
900, 909, 990). The digits 8 and 7 appear in 54 numbers. The number of n-digit
numbers which do not have the same digit twice in a row is 97 for n > 1,
and 10 for » = 1. Hence the number of numbers from 0 to 999,999 with this

property is 10 + 92 4 93 94 95 08 — 507 871.

139. A 4-digit number may contain 4 different digits (1, 2, 3, 5), just 3
different digits, or just 2 different digits. Hence the total of required numbers is

P, +2CP(22,1,1) - P(2,2) =24 + 6 - 12 + 6 = 102.
140. Reasoning as in Problem 139, we obtain the answer

2P(2,1,1,1) + 3P(3, 1, 1) + 2P(2,2, 1) 4+ 3P4, 1) + P(3, 2) = 265.

141. In a 6-digit number there may appear 1, 2, or 3 pairs of equal digits.
One pair can be selected in Cg ways. The number of permutations of 4 different
and 2 equal digits is P(2,1,1,1,1) = 6!/2! =360. In 5! = 120 of these
permutations 2 equal digits appear together. Hence in this case we obtain
5(360 — 120) = 1200 admissible numbers. T'wo pairs of equal digits can be
selected in C? = 10 ways and, then, 2 additional digits can be selected in Cj
ways. The number of permutations of these digits is P(2,2, 1, 1) = 180. In
2 - (5!/2!) = 120 of these permutations there is (at least) 1 pair of equal digits
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in a row and in 4! = 24 of these permutations there are 2 such pairs. By the
principle of inclusion and exclusion, this case contributes

10 - 3(180 — 120 + 24) = 2520

admissible numbers. Similarly, the case of 3 pairs of equal digits contributes

3 (_6! _
C? ((2,)3 _3.2 (2')2 +3. ———3)_300

admissible numbers. In all, we obtain 4020 admissible numbers.

142, The number of 5-digit numbers which can be composed of the given
digits is
51 o1 ! . 5! L
or TGl + Gt ap T Gt g = MO
In 3P, 4 2(P,/2!) = 24 of these numbers the digit 3 appears 3 times in a row.
This gives 416 admissible numbers.

143. The number of permutations of the given digits is P(2, 2,2, 2). In
P(2, 2,2, 1) of these permutations 1 of the given digits appears twice in a row,
in P(2, 2, 1, 1) of these permutations 2 of the given digits appear twice in a row,
in P(2, 1, 1, 1) of these permutations 3 of the given digits appear twice in a row,
and in P(1, 1, 1, 1) of these permutations 4 of the given digits appear twice in a
row. By the principle of inclusion and exclusion, the required number of
permutations (in which no digit appears twice in a row) is

P(2,2,2,2) —4P(2,2,2,1) + 6P(2,2,1, 1)
—4P(2,1,1,1) + P(1,1,1,1) = 864.

144. Reasoning as before, we obtain the answer

8! 7! 6

145. Reasoning as before, we obtain the answer

| !
(;—%'2-—2-%+6!=88,080.

146. Reasoning as before, we obtain the answer 20,040.

147. 'The first number can be chosen in 20 ways and the second in 10 ways
(its parity is determined). Since the order of the numbers is immaterial, the
number of ways is 20 - 10/2 = 100.
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148. Either all 3 numbers are even or 1 is even and 2 are odd. Hence the
number of choices is Ci, + CECl; = 2030.

149. There are 2 choices at each of 11 junctions. Hence the number of
admissible routes is 211 = 2048.

150. Since 1 choice is made at the point of departure, there remain 21° = 1024
possibilities.

151. Reasoning as before we obtain the answer 35 = 243.

152. If we take p 10-cent coins, then we can take 0, 1,..., 20 — p 15-cent
coins, that is, we have 21 — p choices. Since p varies from 0 to 20, we obtain the
answer 1 + 2 + 3 4 - + 21 = 231.

153. 'The total number of selections of the 5 coins is C?; = 1287. Hence the
maximal number of false guesses 1s 1286.

154, The number of 5-digit numbers is 90,000. Of these, all the digits are
even in 4 - 5* = 2500 cases and all the digits are odd in 55 = 3125 cases. In
45 — 1024 cases, the numbers contain no digits smaller than 6, and in 3 - 4* = 768
cases the numbers contain no digits larger than 3. 5! = 120 numbers contain all
the digits 1, 2, 3, 4, 5; 4 - 4] = 96 numbers contain all the digits 0, 2, 4, 6, 8.

155. Itis clear from the conditions of the problem that two throws yield the
same sum if and only if the numbers turned up in one throw are a permutation
of the numbers turned up in the second throw. Hence the number of different
sums is C¢ + 6 = 21.

156. Reasoning as in Problem 155, we obtain the answer C3 4 2CZ + 6 = 56.

157. 'The number of throws in which the dice turn up the same number is 6.
The throws in which the dice turn up 2 different numbers can arise in the
following 3 ways: 1 die turns up |1 number and the remaining 5 dice turn up a
different number, 2 dice turn up 1 number and the remaining 4 dice turn up a
different number, 3 dice turn up | number and the remaining 3 dice turn up a
different number. In all these cases the 2 different numbers turned up by the 6
dice can be selected in A2 ways. In the first case the die which turns up the
“one-die’”’ number can be selected in 6 ways. It follows that this case contributes
6A4; = 180 throws. Similarly, the second case contributes AgP(2, 4) = 450
throws, and the third case contributes C2P(3,3) = (1/2!) A2P(3, 3) = 300
throws. Hence the number of throws in which the dice turn up 2 different
numbers is 180 4 450 4 300 = 930. To compute the number of throws in
which the dice turn up 3 different numbers we find all partitions of the number 6
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into 3 summands: 6 =1+14+4=1+2+3=2+4 2+ 2. We obtain,
accordingly:

—21'—A§P(1, 1,4) = 1800,
A2P(1, 2, 3) = 7200,

1
T A3P(2, 2, 2) = 1800,

that is, there are 10,800 cases in which the dice turn up 3 different numbers.
The partitions of 6 into 4 summands are:

6=14+14+14+3=14+14+2+2.
Hence the number of throws in which the dice turn up 4 different numbers is

1

A7 AP(L L 1,3) + o

(2!)2 A3P(1, 1, 2,2) = 7200 4 16,200 = 23,400.

The number of throws in which the dice turn up 5 different numbers is
(1/4!) A3P(1, 1, 1, 1, 2) and the number of throws in which the dice turn up 6
different numbers is 6! = 720. Observe that

6 + 930 + 10,800 + 23,400 + 10,800 4 720 = 6S.

158. For agiven throw, the z dice can be grouped in classes depending on the
number turned up by each die. Hence our problem is to find the number of
distributions of 7 like elements in 6 different boxes and this number is C3_;
(see p. 171).

159. Since 1,000,000 = 2% - 55, every decomposition of 1,000,000 into 3
factors is of the form

1,000,000 = (2% - 5°2)(2% - 5P2)(2% - 5f%),

where oy , o9, 3,81, Ba, By are nonnegative integers such that o, + ay + o3 =
B, + Bs + B3 = 6. Now, the number of partitions of 6 into 3 nonnegative
summands is C; = 28. Hence the number of decompositions of 1,000,000 into
3 ordered factors 1s 282 = 784.

160. The decompositions obtained in the preceding problem can be divided
into 3 classes according as all 3 factors are equal, 2 factors are equal and the third
factor is different, all three factors are different. The first class consists of 1
decomposition only, namely, 1,000,000 = 100 - 100 - 100. Next we find the
number of decompositions in the second class. If each of the 2 equal factors is of
the form 2* - 58, then 26 + a3 = 28 -+ B3 = 6. Now, the equation 2x -y = 6
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has 4 nonnegative integer solutions: x =0, y =6; x =1, y =4; x = 2,
y = 2; 2« = 3,y = 0. Since we can combine any o with any 3, we get 16 possible
ways of selecting a pair o, 8. One of these_pairs, namely, the pair « = 2,8 = 2
has to be rejected since it leads to the decomposition of 1,000,000 into 3 equal
factors already accounted for. We are thus left with 15 pairs, each leading to 3
ordered decompositions. Hence the second class consists of 45 ordered decom-
position. If we disregard order, the number of decompositions is 15. Finally, the
number of ordered decompositions in the third class is 784 — 1 — 45 = 738.
These can be arranged in groups, the decompositions in each group differing
from each other in the order of their factors. It follows that each group contains 6
decompositions. In all, we obtain 1 4 15 + 123 = 139 unordered decomposi-
tions of the number 1,000,000 into 3 factors.

161. There are 2 choices for each of the 9 coins. Hence the number of
distributions is 2°.

162. Weorder the 37z objects and give the firstnobjects to the first person,the
second 7 objects to the second person, and the remaining » objects to the third
person. Since order of the objects in a share is immaterial, we obtain (3z)!/(n!)? =
C,.Cy, ways.

163. Reasoning as before, we find that the number of groupings is
(2n)1/(27n!).

164. Reasoning as before we obtain the answer (nk)!/(k!)" n! .

300 30!
(100231 ’ 3D 10t

165.

166. 'The 4 aces can be arranged in pairs in 4!/(2!)> = 3 ways. The remaining
32 cards can be arranged in batches of 16 in 32!/[(16!)% 2!] ways. Since the 2
arrangements can be combined in 2 ways, we obtain the answer 3 - 32!(16!)2.

167. The number of ways is 10!/(25 - 5!) = 945.
168. 945.
169. 9!/(3!)* = 280.

170. Six apples can be divided among 3 people in C; ways. The remaining 6
fruits can be divided in 3% ways since each fruit can be given to any of the 3
people. This implies a total of 38CZ = 20,412 ways.

171. First we distribute the apples. Since each person gets at most 4 apples,
distribution of the apples, apart from permutations, takes place in accordance
with one of the following schemes:

6 =4+4+240=44+1+4+1=34+34+0=34+241=24+2+42
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If the distribution of the apples follows the scheme 4 4 2 + 0, then it remains to
select 2 out of 6 fruits for the second person and to give the remaining fruits to the
third person. This can be done in C§ ways. If we bear in mind the possibility of
permuting the 3 persons, then we see that this case contributes 3!C: admissible
distributions. In case of the scheme 4 + 1 4 1, the second person must obtain 3
out of 6 fruits (C§ ways). Since 2 people now have the same number of apples, the
number of relevant permutations of the 3 people is P(2, 1) = 3. Hence this case
contributes 3C§ admissible distributions. In case of the scheme 3 + 3 4 0, we
must select 1 of 6 fruits for the first person and 1 of 5 fruits for the second person.
The number of relevant permutations of the 3 people is again 3. Hence this case
contributes 3C;Cy distributions. The remaining schemes are analyzed in much
the same way. In all, we obtain

6C2 + 3C3 + 3CICL + 6CICE + C2CE = 690

admissible distributions.

172. Since 9=64+34+0=6+2+1=54+44+0=5+3+4+1=
44+3+2=5+2+2=4+4+1=3+ 3+ 3, we obtain, reasoning as
in the preceding problem,

6[C3 + C5 + CoC3 + CiCF + CFC3] 4 3(CyCy + C3CY) + CIC3 = 19,068

admissible distributions.

173. The cards in the deck can be distributed among the 13 players in
52!1/(41)13 ways (see Problem 164). If each player is to obtain 1 card of each suit,
then the number of distributions is 134 (13 choices for each of the suits). In the
third case one can choose 1 card of each suit in 134 ways. After that, the remaining
12 cards of one suit can be distributed in batches of 4 in 12!/[(4!)® 3!] ways, and
all the remaining cards (48 of them) can be distributed in batches of 4 in
(121)4/[(4!)'2 (3!)%] ways. These batches can be distributed among the 12 players
in 12! ways. If we bear in mind the fact that the player with cards of all suits can
be selected in 13 ways, we obtain in the present case the answer (13!)5/[(4!)13(3!)4].

174. 'The suit that is absent from the selection and the suit that is repeated
can be selected in A2 ways, the 2 cards of the repeated suit can be selected in C5,
ways, and the 2 cards of the remaining 2 suits can be selected in (Cj;)? ways.
Hence the answer A3(Cl,)% Ck = 518,184.

If the selection is to contain cards of exactly 2 suits, then we can have either 2
cards of each suit or 1 card of one suit and 3 cards of the other suit. In the first
case we select 2 suits and then 2 cards from each suit. In the second case we
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select the first and second suit (here the order of the suits is important) and then
select 3 cards of the first suit and 1 card of the second suit. Hence we get

CHC2)? + AXCE,CL, = 81,120
Casces.

175. We divide the 13 cards of each suit in accordance with the scheme
3 + 3 + 3 4 4. This can be done in 13!/[4!(3!)*] ways. The 4-card batches can
be distributed among the players in 4! ways and the 3-card batches of each suit
in 3! ways. Thus there are (3!)*4! ways of distributing the different batches and,
therefore, the cards can be distributed in

13! \¢ o, (131
(& (3!)4) HOY = apane

ways.

176. We arrange the 5 people in a certain order. Next we order the 18 objects
and divide thern into 4 groups of 4 objects each and 1 group of 2 objects. We give
the group of 2 objects to 1 of the 5 people, and each of the groups of 4 objects to
each of the remaining people (the first group to the first of the remaining people,
the second to the second, and so on). Since order within the groups is irrelevant,
we obtain 5 - 18!/[(4!)* 2!] distributions. In the second case we obtain, likewise,
18!C3/[(4!)? (3!)?] distributions.

177, 'There are 3 possibilities for each pair: we select no object from the pair,
we select 1 object from the pair, or we select 2 objects from the pair. Hence the
number of selections is 314 = 4,782 969.

178, The 4 black balls can be placed in 6 different boxes in Cg ways. The
same is true for the white and blue balls. By the rule of product we obtain
(C3)® = 2,000,376 ways of placing the balls in 6 different boxes.

179. Reasoning as in Problem 178 we obtain the answer C3C% = 5720.

180. Represent each partition of the number  into summands by means of a
graph. If we add to the graph a column of z dots, then we get a graph representing
a partition of the number 2z into » summands.

181, Choose 3 numbers from the range 1 to » — 2. Increase the largest
number by 2 and the next-to-largest number by 1. The result is a triple of
numbers of the required kind. Also, all the required triples can be obtained in
this way. Since 3 numbers can be chosen from the range 1 to n — 2in C2_, ways,
this is the required answer.

182. P(2,2,2,2,2,2,1,1,1,1) = 16!/2% ways.
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183. Place identical checkers on the 48 unoccupied squares of the chessboard
and compute the number of permutations of the resulting arrangement. This

number is P(48,2,2,2,2,2,2,1,1, 1, 1) = 64!/(2% - 48!).

184. Reasoning as before, we obtain the answer
P(32,8,8,2,2,2,2,2,2,1,1,1, 1).

185. Suppose that p squares are taken up with white checkers and ¢ squares
are taken up with black checkers. There are C¥! ways of setting out 15 white
checkers on p squares so that no square is empty. Similarly, there are Cj;* ways of
setting out 15 black checkers on g squares so that no square is empty. The p
squares for the white checkers and the ¢ squares for the black checkers can be
selected in P(p, ¢, 24 — p — q) ways. Hence the number of ways of setting out
the pieces is

Z P(pa 9, 24 — P - Q)Cﬂ—lcﬂl,

.9
where we sum over all p and ¢ such that

1<p<15 1915 p+g<24

186, The 64 squares can be divided into 16 groups of 4 such that the squares
in a group are permuted by a rotation through 90°% Our.problem is to select 5
such groups. This can be done in C3g = 4368 ways.

187. Reasoning as in Problem 186, we obtain the answer Cj; .

188. Since we have only half as many squares as in Problem 187, the number
of ways is C§ .

189. Six white and 6 black checkers must be set out on 16 black squares
which belong to half the chessboard. This can be done in P(6, 6, 4) == 16!/(6!6!4!)
ways.

190. We must select 12 out of 16 black squares belonging to one half of the
chessboard and settle these squares with arbitrary checkers. This can be done in
212C72 = 7,454,720 ways. (It is clear that a square in the remaining half of the
board which is centrally symmetric to a square occupied by, say, a black checker
must be settled with a white checker.)

191, The problem comes down to choosing 5 out of 7 squares in a row. This
can be done in C? = 21 ways.

192. The corner squares may or may not be occupied. Consider the case of
an occupied corner square. The 12 inside squares of the row and column
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determined by an occupied corner square contain 8 checkers. These can be set
out in C}, == 495 ways. Now consider the case of an unoccupied corner square.
The 12 inside squares of the row and column determined by an unoccupied
corner square contain 10 checkers. These can be set out in Cj3 == 66 ways. This
gives a total of 561 ways.

193. 'The 7 white balls can be placed in 9 different pockets in Cj; ways and
the 2 black balls in C¥ ways. Hence the number of ways is CJ,CS, = 289,575.

194. Reasoning is before we obtain the answer Ci4(Cs)? = 521,235.

195. First we give 9 books to person C. This can be done in Cj, ways. The
remaining 18 books can be distributed between 4 and B in 218 ways. Hence the
answer 218C, .

196. There are 4% ways in which the 8 people can leave the elevator at the 4
floor stops. In 38 cases no passenger leaves at a preassigned floor. In 28 cases no
passenger leaves at 2 preassigned floors. In 1 case no passenger leaves at 3
preassigned floors. The principle of inclusion and exclusion yields the answer

48— 4-38 4 6-28 — 4 = 40,824,

197. 'The following cases arise: all of the summands are divisible by 3, just 1
summand is divisible by 3, no summand is divisible by 3. In the first case the
summands may be selected in C2; ways. In the second case, upon division by 3,
one summand leaves the remainder 1 and the other leaves the remainder 2.
Consider the numbers from 1 to 100. Upon division by 3, 34 of these numbers
leave the remainder 1, 33 leave the remainder 2, and 33 leave the remainder 0.
It follows that in the second case the summands may be selected in Cj4(C3,)2
ways. In the third case all 3 summands leave the remainder 1 or all 3 summands
leave the remainder 2. These possibilities give rise to C3, and Cj, possibilities
respectively. In all we have 2C3; + C3, 4 C3,(C3,)% == 53,922 ways.

198. Reasoning as in the preceding problem, we obtain the answer

3C% | (CL)? = g (3nt — 3n 1 2).

199. Pockets for p white balls can be chosen in C}_; ways. With p pockets
occupied by white balls, there are n — p 4 2 choices for the black ball (we may
place it in one of the empty n + 1 — p pockets or we may decide to leave it out).
Hence the answer

n q

-1
Y (n—p+2)Chn= Y sCi+ Y C7.

p=0 s=1 p=0
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Since
q
Y. sC; = q251
s=1
and
g-1
Z Cy=2"—1
p=0

(see Problem 401a), our answer takes the simple form (g + 2) 2¢-1 — 1.

200, Let I denote a batch of white balls and B a batch of black balls. Our
problem implies that the balls are arranged in accordance with one or another
of the schemes BWBW --- BW or WBWB --- WB, where the number of pairs of
letters in each scheme is ». Now, m white balls can be separated into » nonempty
batches in C7~%, ways,and »n black balls can be separated into » nonempty batches
in CT~1 ways. Hence in this case (2 — 1 contacts) the number of ways is
2C721C™L . The corresponding number in the second case (2r contacts) is
C:n _lc‘r—i + Cr—l C*

n— m-1-"n-1"*

201. Let A(m, n) denote the number of ways of earning m points as a result
of passing » examinations. Then it is clear that

A(30, 8) = A(25,7) + A(26, T) + A(27,7),

and so on. By successive reduction of m, we obtain the answer 784.

202. First we choose the 7 fixed objects. This can be done in Cj;,, ways.
The remaining m objects are permuted so that none stay fixed. This can be done
in D,, ways (see p. 51). Hence the number of admissible permutations is

[(m 4+ n)!/(m!n)]D,, .

203, 'There are (n 4 p)" ways of distributing » things among n 4 p people.
In (n + p — 1)7 cases, a certain person will not get anything. In (z + p — 2)7
cases, a certain 2 people will not get anything, and so on. Now application of the
principle of inclusion and exclusion yields the required result.

204, The first column of the graph of a partition of 2 4 x into » + x
positive summands contains ¥ + ¥ points. Deletion of this column yields the
graph of a partition of  into nonnegative summands.

205. (a) Since each of the » members can vote for each of the » candidates,
the number of outcomes is n™.
(b) Here n votes are distributed among » candidates. This can happen
in C7-1 ways.
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206. Consider an admissible partition of 2z into summands a, b, ¢,
a+b+c=2n a<<b<c We claim that a 7~ 1; indeed, a = 1 implies
b+ e¢=2n—1, and so b < ¢ contradicting b + 1 > ¢. Also, a + b > ¢, and
a + b and ¢ have the same parity. This implies that @ + & > ¢ 4 2. But then
a—1,b—1,¢— 1 form a partition of 2n — 3 suchthat (¢ — 1) +(b — 1) >
¢ — 1. This establishes a one-to-one correspondence between the partitions of
2n and 2n — 3.

207, The result follows from the equality
Cot+ Cot Gt e =270

208. Suppose the first person obtained x objects of the first kind, v objects of
the second kind, and z objects of the third kind. Then x + y + 2 = 3,
0 < «x, y, 2 << 2n. In other words, our problem is to find the number of non-
negative solutions of the equation x + y 4 2z = 3n with each entry in a solution
< 2n. If we ignore this restriction, then our problem reduces to the problem of
finding the number of ways of dividing 3 like objects among 3 people. This
number is Cs,,;. Now we find the number of nonnegative solutions of
% + y + z == 3n with & > 2n. This number is equal to the number of non-
negative integral solutions of the equations y + 2 = k&, 0 <C & << n (taken one
at a time), that is, 1 + 2 4 --- + n = n(n + 1)/2. Also, there are n(n + 1)/2
nonnegative solutions of x + y + 2 = 3n with y > 2a, and »n(n 4+ 1)/2 non-
negative solutions of ¥ 4+ y 4+ 2 = 3n with 2 > 2n. If we reject the $n(n 4 1)
“bad’ solutions, we obtain the answer 372 + 3n + 1.

209. Reasoning as before, we obtain

2n-1

Cints — 4 Y, Chra = Clays — 4Chapp = 3(2n + 1)(82° + 8n + 3).

k=0

210, The mathematical counterpart of removing distinctions of kind is to
identify the solutions %, y, # and 2n — x, 2n — y, 2n — = of the equation
x¥ + v + 2 == 3n in Problem 208. With one exception (that of the solution
x = n,y = n, 2 = n) corresponding solutions are different. This means that the
reduced number of solution is (3n® + 3n)/2 + 1.

211, Here we are required to find the number of nonnegative solutions of the
equation x; + x5 + - + %, = mn, with 0 < x;, << 2n, 1 <<k << m. If we drop
the restriction x; << 2n (but keep 0 < x,), then we obtain Cj.-}, | solutions.
Now we find the number of nonnegative solutions of x, + x5 + - 4 %, == mn
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for which x; > 2n. This number is equal to the number of nonnegative solutions
of the equations x5 + 3 + - + %, = &, 0 <<k < mn — 2n — 1, that is,

mn—2n—1
Z m—2 C’m—l
k+m—-2 — mn—2n+m—2

Each of the possibilities x, > 2m,..., x,, > 2n contributes again as many “bad”
solutions. It would appear that the number of solutions to be rejected is
CLCm T o en_z. But it must be remembered that in rejecting this number of
solutions we are rejecting certain solutions (say, those with x, > 2n, x, > 2n)
twice. The correct number of solutions of our problem is obtained by applying

the principle of inclusion and exclusion.
212. 'There are 231 ways. This problem is a special case of the next problem.

213, Let x;,x,,x; denote the shares of objects of the first kind and
Y1, V2 , V4 the shares of objects of the second kind. Then we must solve the system
of equations, %, + %, + %y =n, y; + ¥y, +y3 =n, With 0 < x;, 4 3, < 7,
1 <<k < 3. If we remove the restrictions x;, yk < n, 1 <k <3, then each
equation yields C2_, solutions, and we obtain (C2,;)? “unrestricted”” solutions of
our problem. The number of unrestricted solutions which violate the condition
¥, + ¥, < n is equal to the number of nonnegative solutions of the systems of
equations X, + %3 = 7,y + y3 = 5, With0 <7 < 2,0 <s <m,andr 4+ s < n.
The number of nonnegative solutions of a system x, + x5 = 7, ¥, + y3 = s is
(r + 1)(s + 1). Hence the total number of solutions of our system is

n—1 n—s—-1 -n—1
X X r+Ds+1)=5 Z(s+1 X —s)n—s + 1)
§=0 r=0 s—O

n—-1

Z Cs+1cfza—s+1 = C:+3

s=0

(see p. 38). There are again as many nonrestricted solutions which violate the
condition x; + ¥y, << 7, and again as many which wviolate the condition
Xy + vy <<n. If we reject all of these solutions, we obtain the answer
(Ch,2)* — 3Cp,5 - For n = 5, we obtain 231 as the answer to Problem 212.

214, There are 9! permutations of 9 people. Let us compute in how many of
these permutations 3 Englishmen sit together. All such permutations can be
obtained from one by permuting the group of Englishmen (3! ways) and by
permuting the group of 3 Frenchmen, 3 T'urks, and the “‘block’ of 3 Englishmen
(7! ways). In this way we obtain 3!7! permutations. There are again as many
permutations in which 3 Frenchmen sit together, and again as many in which
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3 Tlurks sit together. Next we see that there are (3!)2 5! permutations in which the
Englishmen sit together and the Frenchmen sit together, and that there are (3!)
in which all countrymen sit together in 3 groups of 3. By the principle of inclusion
and exclusion, the answer to our problem is

91 — 33171 + 3(31)2 50 — (3N)* = 283,824.

215. 'The total number of permutations is 9!. Let us compute the number of
permutations in which a certain 2 Englishmen sit together. The remaining 7
people and the block of 2 Englishmen account for 8! such permutations. Since we
can permute the 2 Englishmen within the block (in 2 ways), the number of
permutations in which a certain 2 Englishmen sit together is 2!8!. Since the 2
Englishmen can be selected in C> ways and there are 3 nationalities to consider,
the appropriate term in the inclusion—-exclusion formula is 3C?2!8!. Now we
compute the number of permutations in which a certain 2 Englishmen as well as
a certain 2 Frenchmen sit together. The 2 two-man blocks and the remaining 5
people form a group of 7 *“objects.” Considering permutations within each block,
we arrive at the figure of (2!)% 7! permutations. Also, our 2 pairs can be selected
in (C3)2 ways. This means that the corresponding term in the inclusion—exclusion
formula is (CJ)®(2)27!. It remains to consider the following cases of
“togetherness”:

(a) 1 triple of countrymen,

(b) 3 pairs of countrymen,

(c) 1 triple and 1 pair of countrymen,
(d) 2 triples of countrymen,

(e) 1 triple and 2 pairs of countrymen,
(f) 2 triples and 1 pair of countrymen,
(g) 3 triples of countrymen.

By the principle of inclusion and exclusion we obtain the answer

9l — 9- 218! + 27(21)2 7! + 3 - 3171 — (21)® 6! — 18 - 31216!
+ 3(30)2 51 4 27 - 31(21)25! — 9(31)2 214! + (31)-.

216. This problem is similar to Problem 217 except that the individual
figures are now computed differently. A certain 2 Englishmen can sit together
in 2!9 ways, and then the others can be seated in 7! ways. This accounts for
219 - 7! permutations. T'o compute the number of cases in which a pair of
Englishmen sit together and a pair of Frenchmen sit together, we note that, apart
from permutation of countrymen within a pair, the pair of Englishmen can be
seated in 9 ways, and then the block of 2 Frenchmen and the 5 other people can
be permuted in 6! ways. With permutations within a pair taken into
consideration, the required number is (2!)29 - 6! Similar arguments apply in the
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remaining cases. By the principle of inclusion and exclusion we arrive at the
answer

9l —9-219-71 4272129 - 6! + 3 - 319 - 6!
— (2% 9 - 5! — 18 - 31219 - 51 4- 3(3!)*9 - 4!
+ 27 - 31(21)29 - 41 — 9(31)2219 - 3! 4 (3!1)2 9 - 2!
217. Let F(N) denote the number of rows of stamps worth N cents. We

separate the rows into classes according to the denomination of the last stamp.
Then we obtain the recurrence relation

F(N) = F(N — 5) + F(N — 10) + F(N — 15) + F(N — 20).

Using this relation and the fact that F(5) = 1, we find that F(40) = 108. (Note:
F(N) =0, for N <0 and F(0) = 1.)

218. Let F(n,,..., n, ; N) denote the number of ways of paying N cents
with coins worth », , 7, ,..., 7, cents, respectively. Then we have the recurrence
relation

Fmny,...,n, ; N)=F(n,,...,n,_,; N)+F(n,,....,n, ; N —n,)

(see p. 78). Itis now easy to obtain the answer F(10, 15, 20, 50; 100) = 20. (Note:
Include analog of condition in brackets given in the solution of Problem 217.)

219. Using the previous recurrence relation, we obtain the answer 4.

220. A row can contain 3, 2, or 1 black balls, If a row contains 3 black balls,
then the fourth ball can be selected in 3 ways, and the 4 balls can be permuted in
P(3, 1) = 4 ways. Hence this case contributes 12 possibilities. Similarly, the case
of 2 black balls contributes C3P(2, 1, 1) = 36 possibilities, and the case of 1
black ball contributes 4! possibilities. In all, the number of different rows is
12 436 + 24 =172.

221. The number of such ordered sums is equal to the number of ways of
placing 7 identical balls in 3 different boxes, that is, C2_, .

222, First we compute the number of zeros used in writing all the numbers
from 1 to 999,999 inclusive. The digit 0 appears last in 99,999 numbers (10,
20,..., 999,990), second in 99,990 numbers, third in 99,900 numbers, and so on.
In all, the digit 0 appears

99,999 -+ 99,990 + 99,900 4 99,000 + 90,000 = 488,889
many times. The total number of digits in our numbers is

94+2-90+ 3-900+ 4-9000 + 5-90,000 + 6 - 900,000 = 5,888,889.
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Since all the digits other than 0 appear in our numbers the same number of times,
each of them appears (5,888,889 — 4,888,889)/9 = 600,000 times.

223, The positions of the pair of digits 3 can be selected in CZ% ways. The
remaining 8 positions can be filled with digits 1 and 2 in 28 ways. Hence the
answer is 28Cyy = 11,520.

The sum of the digits in each of our numbers lies between 8 -1 42 -3 = 14
and 8 -2 + 2 -3 = 22. If one of our numbers is to be divisible by 9, then the
sum of its digits must be 18. Hence the sum of the 1’s and 2’s in our number must
be 12. This sum can be obtained by taking 4 ones and 4 twos. Since the number of
permutations of 4 ones, 4 twos, and 2 threes is

10!

aa o — 130,

P4,4,2) =

this is also the answer to this part of the problem.

224. If 2 digits a and b form an inversion, then by interchanging their order
we obtain a permutation in which @ and b no longer form an inversion. The
number of permutations of the numbers 1 to n is n!. Since the number of ways of
choosing 2 out of  digits is C2 and there are as many inversions as noninversions,
it follows that the number of inversions is n!CZ/2.

225. 'The number of ordered partitions of n into 3 positive summands is
C:_, = (n® — 3n + 2)/2. If nis even, then (n — 2)/2 of these ordered partitions
have 2 equal summands. If # is odd, then (z — 1)/2 of these ordered partitions
have equal summands. Also, if # is divisible by 3, then there is 1 partition
of n with 3 equal summands. Applying the principle of inclusion and exclusion,
we find easily that the number of ordered partitions of # into distinct summands
is

n*—3n42 3 nt—6n -+ 12

3 5(,,_2)+2= 7 , if n= 6k,
TP Je-n=""0E 0 a6k,
TR S0t a2
”2_3’++2_%(n_1)+2=”2_6++9, if n=6k-+3,
Tt Ja-=""0E i n—ehta,
e O B R N T



238 Answers and Hints

If we disregard order of the summands in our partitions, then we obtain 6
times fewer partitions. It is not difficult to see that in all cases the number of
(unordered) partitions of » into 3 distinct positive summands is equal to the
integral part of (n2 — 6n + 12)/12.

226. The idea of the proof is to compute the number of all ordered partitions
of 12n + 5 which otherwise satisfy the restrictions of the problem and have
4, 3, and 2 different summands, respectively, It is then easy to find the number of
(unordered) partitions in each of the three categories. Adding these three
numbers, we obtain the answer to our problem. The computations follow.

The number of ordered partitions of 12z + 5 into 4 positive summands
X, ¥, %, t is Cip,. 4. The number of such partitions with x = y is equal to the
number of positive integral solutions of 2x + 2 + ¢t = 12» + 5. To compute
this number, note that the number of positive solutions of 2 + t =12n — 2k + 5
is 12n — 2k - 4. It follows that the number of positive solutions of 2x + z 4 t =
12n + 5 1s

6n+1
Y., (12n — 2k + 4) = (6n + 1)(6n + 2) = 2C%,., .

k=1

The number of positive solutionsof x + y + 2+ ¢t = 12n + Swithae =y = 2
is equal to the number of positive solutions of 3x 4 t = 127 4 5, that is,
dn + 1.

Now we compute the number of positive solutions of x +y + 2 + ¢t =
127 4 5 in which all the entries are <{6n — 2. T'o do this, we first compute the
number of solutions with x = k& => 6n» + 3. We rewrite our equation in the form
y+2+t=12n+4+ 5—k and note that for a fixed & this equation has
Cizniar pDositive solutions. This means that the number of solutions with
x>=6n-4 3is

12n4+2

2 3
Z Clonta—x = Ceniz -

k=6n+3

Since x is only 1 of 4 variables, we see that the number of positive solutions of
% +y + =z + ¢t =2n + 5in which all the entries are <<6n + 2is C%,,,, - 4C3,.. .

Now we compute the number of positive solutions of * -y + 2 4 ¢t =
12n 4 5 in which 2 entries are equal and all entries are <6n + 2. We note that
the number of positive solutions of 2x + 2 + ¢t = 12n 4 5 with 2 > 6n | 3
is 3n(3n + 1) = 2C;,,, - It follows readily that the number of positive solutions
of our equation with ¥ = y and all the entries <6n + 2 is 2(C;,,» — 2C3,,1)-
Since x and y can be replaced by other pairs of the variables x, y, 2, ¢, we see that
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the number of positive solutions of x + y 4 & + £ =12n + 5 inwhich 2 entries
are equal and all the entries are <6m 4 2 is

ZCZ(Csan - 2C§n+1)‘

Observe that the number of positive solutions of 3x 4 ¢ = 12z 4+ 5in which
t > 6n + 3 is 2n. Hence the number of positive solutionsof x +y + 2 + t =
122 + 5 in which just 3 entries are equal and all entries are <6n + 2 is
42n 4 1).

To complete our computations, we make use of the principle of inclusion and
exclusion. Before we do so, however, we note that in rejecting the positive
solutions with 2 equal entries we are rejecting the positive solutions with 3 equal
entries 3 times.

We can now claim that the number of positive solutions of x + y + 2 + t =
127 4 5 with 4 different entries all <6n 4 2 is

[Clanta ~ 4Conse] — 2Ci[Conra = 2C5n11] + 8(2n + 1) = 120(120° + 3n - 1),

the number of positive solutions with exactly 3 different entries and all entries

<6n + 2 is
2CHCenia— 2C ] — 12(2n 4 1) = 120(9n - 4),

and the number of positive solutions with exactly 2 different entries and all entries
<6n + 2 is 4(2n + 1).

In order to go from ordered to unordered partitions of 12z | 5 into 4 positive
summands <6z + 2, we must divide the number of ordered partitions in the
first of our 3 classes by 4! = 24, in the second by P(2, 1, 1) = 12, and in the
third by P(3, 1) = 4. The sum of the resulting numbers is the answer to our
problem. The answer is

3(12n2—|—3n— 1) +n9 +4) +2n+ 1 znTH(12n2—|—9n—|—2).

227. The answer is (1212 | 3n — 1) nf2, the first summand in the answer to
Problem 226.

228. A geometric progression a, ag, ag®,... is determined by its first term a
and the multiplier ¢. In an increasing progression, we must have ag® < 100, that
is, @ <L 100/¢%. Hence the number of increasing geometric progressions with
multiplier ¢ is £(100/¢%). The number of all geometric progressions of triples of
different natural numbers is

2[5() + 2 (3) + 5 (55) + =+ £ jgg)] = 102
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(The presence of the factor 2 is explained by the fact that the admissible
decreasing geometric progressions are obtained by reversing order in the
admissible increasing geometric progressions.)

229. Let F denotea row of Frenchmen, T a row of T'urks, and a an English-
man. Our problem allows 2 types of arrangements: FaTaFaTaFaTaF and
TaFaTaFaTaFaT. In the first scheme we separate the 7 Frenchmen into 4
nonempty groups (Cg ways) and the 10 Turks into 3 nonempty groups (C5 ways).
In any specific arrangement, we can permute the nationals of each group among
themselves. Hence the number of arrangements of the first type is 6!7!10!C3C?E .
Similarly, the number of arrangements of the second type is 6!7!110!CZC3 . The
answer to our problem is

6! 7! 10! [C3CE 4 CZC3] = 6! 71 10! 1980.
230. Reasoning as in Problem 229, we obtain the answer 5!7!10!1080.

231. Consider a solution pair (P, Q). Then P 1s a product of G and some
(possibly none) of the numbers a®, b8, ¢v, d%, and Q 1s the product of G and the
remaining numbers (if any) in the set a%, b8, ¢¥, d%. Since there are 24 = 16 ways
of dividing 4 numbers in 2 groups, it follows that there are 16 solution pairs
(P, Q). If order in a solution pair is disregarded, then there are 8 solution pairs.

232. Each solution pair is of the form (G4, GB), where A and B are divisors
of the number a*$f¢¥d®. This number has N = (o + 1)(8 + 1)(y + 1)( + 1)
divisors (see Problem 67). If we identify the pairs (GA, GB) and (GB, GA4), then
the number of solution pairs is N 4 N(N — 1)/2 = C%,; . Otherwise the
number of solution pairs is N2

233, There are C§, combinations in which all 6 letters are different, C3,Ci,
combinations with just 1 pair of like letters, and so on. The total of admissible
combinations is

0260 + 02100149 + 02200148 + 0230 - 146,400-

234, An admissible permutation starts with a block of, say, & letters «
followed by a single 8. The remaining letters can be any permutation of p — %
letters o, ¢ — 1 letters 8, and 7 letters y. 'The number of the latter permutations is
P(p — k, g — 1,7). Summing on % from 1 to p, we obtain the answer

Lo (pdgtr—h-1 . &
kgl (p —R)!(g— 1D~ - Cq+'r—1 121 Cp—11:+q+,-_.1 .
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Since

k4

% Cohuasrs = Cid
p—k+a+r—-1 — “opt+g+r—1>
k=1

fecs : : T -1
the number of admissible permutations 1s C7,, C2ro . .

235. Concentrate on a particular color. The numbers which give the lengths
of successive stripes of this color in a pattern form an ordered partition of 10 into
summands from 2 to 10. The number of such partitions of 10 into £ summmands is
the coefficient of x1% in the expansion

(x2+x3+...+x10)k
x2_x11k
:( l—x)

= x%(1 — x")*¥(1 — x)°*

— x2k (1 — kx? — k(’; ._21) xls )(1 + Ex + k(}; t|'21) x2
k(k + 1)(k + 2) kR (RE9)
t—133 ©t+tF 10! W o).

It is clear that the values of this coefficient for & = 1, 2, 3, 4, 5 are, respectively,
1, 7, 15, 10, 1. Since in any pattern the value of % is the same for all 3 colors and
the lengths of the stripes of different color can be combined independently, we
see that the number of admissible patternsis 13 + 73 + 15 + 10® + 13 = 4720.

Now we drop the restriction that the patterns must end in blue. If the pattern
ends in red, then there are & + 1 stripes of red to % stripes of white and % stripes
of blue. Hence in this case wehave 1 + 7-12 4+ 15-72 4 10-152 41102 =
3093 patterns. Similarly, if the last stripe is white, then we have 12 + 72 |
1527 4+ 102 - 15 4 12 - 10 = 3135 patterns. The total number of patterns is
10,948.

If the minimal length of a stripe is 3 inches, then the problem reduces to
determining the number of ordered partitions of 2 summands from 3 to 10.
If # = 1, 2, 3, then we have, respectively, 1, 5, 3 ordered partitions. Hence there
are 13 + 5° | 3% = 153 patterns which end in blue, 1 4 5-12 3 -52 = 81
patterns which end in red, and 124 52-1 4 3%2-5 = 71 patterns which end

in white,

236. Sincel dined just once with all 6 and twice with each group of 5, I must
have dined just once with each group of just 5. This and the data in the problem
show that I never dined with just 4 or just 3 or just 2 of my friends. Since I met
with each of my friends 7 times and the 6 different dinners account for 6 meetings,
I dined once with just 1 of my friends. Each friend was absent 6 times from the
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dinners mentioned so far (5 times from dinners with just 1 and once from a
dinner with just 5). Since each friend was absent from § dinners, it follows that
I dined twice alone.

237. The schedule for each teacher can be made up in 12! ways. Hence the
schedules for both teachers can be made up in (12!)® ways. The number of
schedules with at least 1 snag is Cl,41,(11!)2. The number of schedules with at
least 2 snags is Cr,A7,(10!)2, and so on. By the principle of inclusion and exclusion.
the number of reasonable schedules is

1 1 1
. o .
e+ ) = 12 176,214,841

1
(121)2 [1 — 145 —
238. Reasoning as before, we obtain the answers

11 1
6 [1 — 1+ 5 — 5+ ﬁ] — 190,800,

and

(A5)° — Cady(45)? + CeAi(A7)" - CeANAY)” + CeAy(43)” ~ CeAy(AD)* + Ce4s .

239. We are to count permutations of the letters in which each letter has a
like letter for a neighbor. This means that we are really concerned with permuta-
tions of a = o?, b = B?, ¢ = 92, and the number of such permutations is 6. The
same answer holds for the expression «38%/2. In the admissible permutations of
aiB%4, each letter also appears in a block of like letters of even length. We put
o =a,,d=a,, B2=05b, B2 =by, ¥ = ¢;, ¥* = ¢, and disregard tem-
porarily the equalities ¢, = a,, b, = b, , ¢; = ¢, . Then we obtain 720 permuta-
tions of the letters &, , a, , b, , b, , ¢, , €5 . These permutations form classes which
differ only by permutations of a; and a,, b, and b,, ¢; and ¢, . Each of these
groups contains 8 permutations of a, , 4, , 8, , b, , ¢, , ¢; which reduce to a single
permutation of «%8%%. Hence the number of admissible permutations of the
letters in 4844 1s 720/8 = 90.

Finally we consider permutations of o%85/5. If we put temporarily o* = o,
B =a,,B2 =08, =b,,y = ¢,y = ¢,, then the admissible permutations
of the letters in o58%/5 are permutations of the letters a,, a,, 8, ,b,,¢,,¢,.
However, some permutations of a;, a,, b,, by, ¢;, ¢, determine the same
permutation of «, B, v in o®855; for example, a,a.b,¢.b,¢, and a,a,b,¢.h5¢, give
a®B2%8%2. This happens whenever 2 letters in one of the pairs (a, , ay), (b, , by),
or (¢, , ¢,) appear together. The letters a, , a, appear together in 2 - 5! permuta-

* A reasonable schedule is a permutation without fixed points of 1,..., 12. There are
Dy, such permutations, and each can be permuted in 12! ways. Hence the answer 121D,
(Translators).
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tions (the same is true for the letters &, , b, and for the letters ¢, , ¢,). The letters
in each of the pairs (4, , a,) and (b, , b,) are together in (2!)* 4! permutations (the
same is true of the letters in the pairs (a,, 4,), (¢;, ¢5) as well as in the pairs
(b5 by), (c1, €2)). Finally, all 3 pairs appear together in (2!)? 3! = 48 permuta-
tions. By the principle of inclusion and exclusion, we see that in

6! — 651+ 3(2N%- 4! — (21 31 = 240
permutations no 2 letters of a pair are together; in
3[2 - 51— 2(21)* 4! + (2!)® 31] = 288

permutations the letters in just 1 of the pairs (a, , a,), (b, , b,), (¢, , ¢,) appear
together; in
3212 4 — (212 31] = 144

permutations the letters in just 2 of these pairs appear together. It follows that
the number of admissible permutations of «, 8, ¥ in 5855 is

288 144 48
20457 + @ T @y — 4%

(if, say, a, and a4, are together, then interchanging their positions has no effect
on the order of o, 8, ¥).

240. First we arrange the players of each nationality into ordered pairs
without considering the order of the pairs themselves. This can be done for each
nationality in 4!/2 = 12 ways. These arrangements for the individual nationalities
can be combined in 12" ways. Each combination of this kind consists of 2# pairs,
and these pairs can be permuted in (27)! ways. Hence the total of admissible
permutations is 127(2n)!.

241. The first row can be painted in 8! ways. Each row after the first can be
painted in

1 1 1
— 811 — 1 _
D, = 8! [1 L+ 5 — 3y + = + 5] = 14,833

ways. Hence the number of ways is 8!(14,833)".

242. 'There are 2" subsets of a set of # different objects (a subset may contain
0, 1,..., n objects). By possibly supplementing these subsets with some (including
none or all) of the n like objects, we obtain all selections of n of our 2n objects.
Hence the number of such selections is 2”. The number of permutations of these
2n objects is (2n)!/n!

243. Ineach admissible permutation, blocks of 2 or more Frenchmen alternate
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with blocks of 2 or more Englishmen. The difference between the number of
blocks of Frenchmen and blocks of Englishmen is at most 1. We compute the
number of ways of separating » Englishmen into p ordered groups of 2 or more
people. The Englishmen can be permuted in 7! ways. A particular one of these
permutations can be broken up into p groups of 2 or more people in P(n — 2p,
p— 1) = C2L | ways (see p. 68). Hence the required number of ways is
n!C2=)_, . The m Frenchmen can be separated into s groups of the indicated
type in m!C:,_, ways. These arrangements can be combined into admissible
arrangements of Frenchmen and Englishmen in one of the following ways:

(a) p groups of Englishmen and p — 1 groups of Frenchmen;

(b) p groups of Englishmen and p groups of Frenchmen, with Frenchmen
coming first;

(¢) p groups of Englishmen, p groups of Frenchmen, with Englishmen
coming first;

(d) p groups of Englishmen and p 4 1 groups of Frenchmen.
Hence the answer to our problem is given by the formula

m! n! [2CH_sCh_s + Ch_sCh g+ CZ_C2 4 )
4 (CR_oChg 4+ C_sCiy + =)
+ (CrsCas + CrsCrg + )]

If we remove brackets in the formula in the statement of our problem (p. 189),
then we obtain the expression just given.

244. First we compute how many of our numbers do not contain the digit 0.
We note that 3 nonzero digits can be selected in C3 ways. With certain 3 nonzero
digits we can make 3% six-digit numbers, with certain 2 nonzero digits we can
make 2% six-digit numbers, and with a certain nonzero digit we can make 1¢
six-digit numbers. By the principle of inclusion and exclusion there are

36— C128 1 C21° = 540

nonzero six-digit numbers which contain all 3 selected nonzero digits. Hence
there are 84 - 540 = 45,360 six-digit numbers containing exactly 3 nonzero
digits.

If a number contains the digit 0, then it must include 2 additional digits. These
can be selected in C; = 36 ways. Take one such triple, say, the triple 0, 1, 2.
Then the first digit is 1 or 2. Suppose the first digit is 1. Then the remaining 5
digits can be 0, 1, or 2 provided that each of the digits 0, 2 is included at least
once. By the principle of inclusion and exclusion, we see that the 5 digits in
question can be selected in

3 — 25 1 1% =180
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ways. But then the number of 6-digit numbers composed of 0, 1, 2 and containing
all of these digits is 2 * 180 = 360. Hence the total of 6-digit numbers composed
of 3 digits including the digit 0 is 45,360 4 12,960 = 58,320.

245. Reasoning as in Problem 244, we obtain the answer

C.c’:[km — C;t(k — D™+ C,%(k — 2" — e (—l)k_lck_llm]
+k—DCHE - CLk— D™ CE Lk —2)™ T — -
+ (_1)]0—20]6:?1’"1—1].

246. Let I'\¥ denote the number of admissible samples. These samples start
with a 1 or do not start with a 1. If a sample starts with a 1, then we decrease each
of its digits by 1 and delete the initial zero (for example, 14,589 is first reduced to
03,478 and then becomes 3478). The resulting number is an admissible (¢ — 1)-
sample of the digits 1, 2,..., n — 1. Hence the number of admissible k-samples of
the digits 1, 2,..., # which begin with the digit 1 is I'\*7". The remaining k-
samples start with an odd digit >1. If we decrease the digits in each of these
k-samples by 2, then we obtain an admissible k-sample of the digits 1,...,7n — 2,
so that the number of our k-samples which do not start with the digit 1 is I' {¥,.
Hence the recurrence relation

r'e _ F(Ic—ll) 4+ F(k)2 ]
If we put F* = C¥% | where N = E[(rn + k)/2], then we have
FEP +Fly = O+ Cha = Gy = FF.

This means that the numbers F¥ satisfy the same recurrence relation as the
numbers ¥,
Next we show that F{ = I''® and F™, = I'\*, . Note that there is exactly

n+l n+l
one way of arranging the numbers 1,.., 7 in increasing order. Therefore
™ =1 = C? = F{™. Again, there is exactly one way of selecting 7 out of the

n + 1 integers 1,...,7 + 1 in agreement with the conditions of our problem.
Therefore '™ =1 = C* = F™, . It follows that for all z and %

n+1 n+l *
F(k) _ F(k) _ Cj{cr
where N = E[(n 4+ k)/2].
247. The number of permutations of the given elements is

(2n)!

P(2,2,.,2) =
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We compute in how many permutations the elements in a certain & pairs appear
together. In such a permutation we can think of the elements in each of these &
pairs as a single object. Then we obtain a permutation of % different elements and
of the elements of #» — & pairs. The number of such permutations is
(2n — k)!/27-*, The & pairs can be selected in C¥ ways. Applying the principle of
inclusion and exclusion, we see that the number of admissible permutations is

@)l L @i, @n—2
“n- Cn—zn_—-i-cn—znT + (—1D)"Canl.

248. Reasoning as in the preceding problem, we obtain the answer

() g —g+ D) elr—2¢+2)!
@ T @ T G

249, The given elements can be permuted in (¢gn)!/(¢!)* ways. We compute
the number of permutations in which elements from certain & of our ¢-selections
appear together. Choose a definite g-selection. Without separating these elements
we can arrange them in a circle in ng ways. The number of permutations of the
remaining k& — 1 ¢g-selections, thought of as 2 — | different objects, and of the
(n — k)gq remaining elements is (gn — gk + k& — 1)!/(¢!)*~*. It is clear that each
of these permutations determines a unique arrangement of our ng objects in a
circle. Hence the number of arrangements of our n¢ objects in a circle such that
elementsfroma certain % g-selectionsare togetheris gn(gn — gk + k& — 1)!/(g!)»*.
Since the & g-selections can be chosen in C¥ ways, it follows from the principle of
inclusion and exclusion that the number of admissible permutations is

250. We adjoin to each selected book s books which follow it. Then our
problem reduces to the problem of selecting p out of # — ps objects, and this can

D
be done in C}__ ways.

251. Let a be the number of Sth graders and let d be the difference between
the number of students in two consecutive grades. The number of ways of
dividing the 6d prizes among the children in grades 5, 6, 7, 8, 9 is

d pd
A Aa+dAa+2d Aa+5d

The number of ways of dividing the 6d prizes among the children in grade 10 is
A% .. The equality

a+5d *
d pd
A Aa+dA a+2d Aa+5d Aa+5d

follows from the obvious fact that A7AY ., = Ayty.



Answers and Hints 247

252. The number of paths is C§ = 70. To answer the remaining questions,
we compute the number of paths through each of the segments of the square and
each of its junctions. For instance, the segment EF (Fig. 36) is traversed by 18
paths (C3 = 3 paths lead from 4 to E and Cj = 6 paths lead from F to C). The
point E is crossed by 30 paths (3 paths lead from 4 to E and C; = 10 paths lead
from E to C). Analogous computations apply to the other segments and junctions.

D C

Fic. 36

253. C? = 20.

254, We are dealing here with 3-combinations with repetitions of objects of
4 kinds, that 1s,

C2 — 2 — 20.

255. C3 = C3, = 220.
256. We obtain 4 triangles.

257. If no 3 of the n points are collinear, then the n points determine C2
triangles. Since, however, p of the points are collinear, we have to reject C3
triangles. We are left with C2 — C? triangles.

258. Any 2 points of one line and any point of the other line determine a
triangle. Hence the number of trianglesis C2C} + C1C2 = (pq/2)(p + ¢ — 2).

259, We obtain
CHCh+ C) + CHCE+ C) + CICC = (P + )P + 9 +7 —2)
additional triangles.

260. The triangles can be of two kinds: either each vertex lies on a different
side of the square, or 2 vertices lie on one side and the third on another. To
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compute the number of triangles in the first case, we select 3 of the four sides
of the square (this can be done in C3 = 4 ways) and then select 1 out of n — 1
points on each of the sides. Hence there are 4(C%_,)? triangles in the first case.
In the second case we select 1 side of the square (4 ways) and 2 of the n — 1
division points on this side (C2_, ways), and then we select 1 of the remaining 3
sides (3 ways) and 1 of the » — | division points (C}_;, ways). Hence, in the
second case we obtain 12CL ,C? | triangles. The total number of triangles is

HCr1)® 4+ 12Ch_1Ch_y = 2(n — 1)*(5n — 8).
261. There are C2 points of intersection.

262, In general, n lines can have C? points of intersection. However, the p
lines intersecting at A contribute only 1 point of intersection instead of C? , and
the ¢ lines intersecting at B contribute again only 1 point of intersection instead
of C%. Hence the number of points of intersection is C; — C2 — C? | 2.

263. Let the number of regions determined by 2 — 1 lines be N,_,. We
draw an additional line, This line is divided by the £ — 1 lines into % parts which
determine % additional regions. Hence N, = N,_; + %, k=1, 2,..., n. For

=mn,weobtainl + 1+ 2 + -+ +n = }(n® + n | 2) regions.

264. Suppose there are already & — 1 planes. We introduce an additional
plane. This plane intersects the 2 — 1 planes along # — 1 lines. By Problem 263,
the £ — 1 lines determine in the plane (¥ — & + 2)/2 plane regions. In turn,
each of the plane regions gives rise to a new region in space. Hence, if we denote
by R, the number of regions determined by % planes, then R, =R, ; +
(k% — k + 2)/2. It follows that the # planes determine

L4 Y B —k+2) = (ot 1t —n+6)
k=1

regions.

265. Thereare C; = 10 lines joining the points 4, B, C, D, E in pairs. There
are 4 lines passing through each point. It follows that we can drop 6 perpendi-
culars from each point. Consider any 2 points, say, B and C. The perpendiculars
dropped from B to the lines passing through C intersect all perpendiculars from
C. There are 3 lines issuing from C which do not pass through B. Hence we can
drop perpendiculars from B to these 3 lines. These perpendiculars intersect the
perpendiculars from Cin 3 - 6 = 18 points. Each of the perpendiculars from B
to the remaining 3 lines (not passing through C) intersects only 5 of the perpen-
diculars from C; this is so because each of the perpendiculars from B in question
is parallel to a perpendicular from C. As a result, we get additional 15 points.
Hence the perpendiculars issuing from 2 points intersect in 18 4 15 = 33
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points, Since there are 10 pairs of points, there are 33 - 10 = 330 points of
intersection. However, some of these points coincide. Specifically, the points
A, B, C, D, E determine C? = 10 triangles, The altitudes of such a triangle
belong to our set of perpendiculars, but they intersect in 1 rather than in 3
points, This means a loss of 2 points per triangle, and so a loss of 10 - 2 = 20
points, It follows that our perpendiculars intersect in 310 points.

266. We can choose for the sides of the triangles any 3 numbers %, y, 2 such
that n + 1 < x, , # < 2n. Hence the number of triangles is C3 = C2 , . To
compute the number of isosceles triangles, note that for any given base we have n
triangles. Therefore the number of isosceles triangles is #2. The number of

equilateral triangles is 7.

267. Our problem reduces to finding triples of numbers ¥, y, z such that
¥ <y <e<2nandx + y > 2. Letx = p. Then y can assume values from p to
2n. If y assumes values from p to 2n — p 4 1, then to each value of y there
correspond p values of 2 such that y << 2 <y + p, 2 << 2n. If y assumes values
from 2n — p + 2 to 2z, then to each value of y there correspond 2n — y + 1
values of z. In all, for fixed x = p, we obtain

2n
20m—p+ 1D+ Y @Qu—y+1)=2pm—§p*+ §p

y=2n—p+2

pairs ( ¥, z) such that x, y, 2 satisfy the necessary conditions. Hence, the number
of triangles such that 1 <o <nwand 1 <y, 2 < 2nis

3 3 n
> (2m =50 +58) =5+ 12

p=1

By Problem 266, there are C3, triangles for which x > n 4 1. Therefore, the
total number of triangles satisfying the conditions of our problem is

g(n—l—l)2—|— n(n+16)(n+2) _ n(n—|—1)6(4n—|—5) .

As for the second part of our problem, note that the number of isosceles
triangles with base x = 2k 1s 2n — k, and the number of isosceles triangles with
base ¥ = 2k + 1 1s also 2n — k. The total number of isosceles triangles is
therefore

zn: (2n — k) + nil (2n — k) = 3n2.



250 Answers and Hints

Excluding these triangles, we obtain the answer

n(n + 1)(4n 4+ 5) In? — n(n — 1)(4n — 5)
6 - 6 )

268. 'The solution of this problem is analogous to the solution of Problem
267. The number of triangles for a givenx = p <{n — 11is 2up — 3p?/2 + p/2.
If we let x vary from 1 to » — 1, then we obtain

71 3 p nndDE—1)
Y (2 =52 +5) = 2 -

triangles. Since the number of triangles for x > nis C3_, , the total number of

n+2
triangles is

n(n+ 1)(n—1)

nn + 1)(m+2)  nn+ 1)é4n—1)
5 X

6 6

+
The number of isosceles triangles is
n—1 n—-1
Y@Cr—k—1)4+ Y 2n—k—1)=3n*—3n+1,
k=1 k=0
and the number of equilateral triangles is

mn+ 1)(dn —1) .1
5 3n? 4 3n 1—6(

n— 1)(n — 2)(4n — 3).

269. Since every group consists of # points and no 3 of these points are
collinear, it follows that each line contains exactly 2 points belonging to a given
group. Therefore, if we number the lines and pick on the first line its point of
intersection with the second line, on the second line its point of intersection
with the third line,..., on the nth line its point of intersection with the first line,
we obtain an admissible group. All the admissible groups can be obtained in this
manner. Cyclic permutation of the numbers assigned to the lines as well as
reversal of their order yield the same group of # points. Hence the number of
admissible groupsis P, [2n = (n — 1)I/2.

270. We can select 7 vertices in stated order in 4; ways. Since cyclic permu-
tation of the vertices as well as reversal of their order yield the same polygon, the
number of required polygons is (1/2r) A, .

271. Pick 2 points on one line and 2 points on the other line. The lines joining
these 4 points in pairs intersect in 2 points (the points of intersection of the
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diagonals of the trapezoid and of two of its sides; we are disregarding the points
on the parallel lines). Since on the first line we can select C?2 pairs of points and
on the second line CZ, pairs of points, the number of required points is 2C2C2 .

272. npoints determine C? circles. Of these circles, C2_; pass through 1 given
point and CL_, pass through 2 given points. Hence a line joining 2 given points
intersects the circles in at most 2C3 , + (2C%_, — C%_,) + 2 points. Since 7
points determine C?2 lines, the number of points of intersection is at most

Cal2Ci_, +2C5 4, — C 3 + 2].

273. Each line of intersection is determined by 2 planes and each plane by 3
given points. We divide the lines into classes according as the planes determining
each line have no given points in common, have just 1 given point in common, or
have 2 given points in common. In the first case, the number of lines is C3C2 /2
(we select 3 point out of #, and then 3 more points out of the remaining n — 3
points; order is immaterial). In the second case, the number of lines is §C3C2 _, .
In the last case, the number of lines is $C3C% _, . The total number of lines is

1CY(CB_, 4+ 3C% , +3C ) = n(n — 1)n — 27)5” — 3)(n* +2) .

Of these lines

yees M — 1)(n — 2)(n — 3)(n — 4)(n — 5)
ECnCn—3 - 72

do not contain any of the given points.

274. Let a, b, ¢, d denote the sides of the quadrilateral. Without loss of
generality, we may assume that a is the smallest of its sides, ¢ is opposite to &, and
b < d. Thena < b < dand a < ¢. Also, since our quadrilateral is circumscribed
about a circle, we must have a 4 ¢ = b + d. It follows that a + ¢ > 2b. But
then, for given a and b, ¢ varies from 2b — a + 1 to n#, and we must have
20 —a<<n— 1.

We have shown that b < (a + 7 — 1)/2 and that 26 — a+ 1 < ¢ < n. The
last inequality shows that for given a4 and b, ¢ takes on n + a — 2b values. Also,
b varies from a + 1 to E[(a + n — 1)/2] = s. It follows that for a fixed q, the
number of quadrilaterals is

zs: m+a—2b)=(s—an—s—1).

Let n be even, n = 2m. Then for odd values of a, a = 2k — 1, we have
s = E[(n + a — 1)/2) = m + k — 1, and, therefore, (m — k)? quadrilaterals; for
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even values of a, a = 2k, we have s = E[(n +a— 1)/2) = m 4+ k — 1, and,
therefore, (im — k — 1)(m — k) quadrilaterals. Summing on a, we find that the
number of quadrilaterals (for » even) is

Ms

(m — k)% 4 im—k)(m—k—kl)

k=1

 m(m— 1)dm —5)  n(n—2)2n — 5)
B 6 - 24

The case when 7 1s odd is solved analogously.

If the sides of the quadrilaterals are of equal length, then a <<b << d < n,
a<canda+c¢=>5b+4 d. It follows that b << (a +n)/2 and 2b — a e < n.
Hence, for fixed a, the number of quadrilaterals is (n — s + 1)(s — a 4+ 1),
where s = E[(a + n)/2).

For n even,the number of quadrilaterals is n(n 4+ 2)(2n + 5)/24; for n odd, the
corresponding number is (n + 1)(2n% + 7n + 3)/24.

275. The number of circles is C3 . The number of circles passing through 1
given point is C>_, , and the number of circles passing through 2 given points is
C! ,.Let A, B, C be 3 of the n given points and consider the circle determined
by these points. There are C2 — 3C2 , 4 3C} _, — 1 circles which do not pass
through A4, B, C. Each of these circles 1ntersects our circle in 2 points. Further-
more, there are 3(C>_, — 2CL _, + 1) circles passing through exactly 1 of the
points A, B, C. Each of these circles intersects our circle in 1 point different
from A4, B, C. The remaining circles intersect our circle in 2 of the points A,
B. C. Hence our circle has at most

(n-3)Yn-4H2n-1)
6

2ACh-3Ch 1 +3C - 1)+ 3(Ch1-2C5, + 1) =

points of intersection different from 4, B, C. Considering all the circles, the
maximal number of points of intersection different from the » given ones is

e (= —d0n 1) _ 52n 1)
6 3 Cn

l\)

and if we add the = given points, the corresponding number is

5(2n3— 1) c o in,

276. Suppose we have already £ planes of the required type. Introduction of
the (% 4 1)th plane results in a division of the sphere into at most 2% additional
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parts. Therefore, n planes of the required type divide the sphere into at most
24244464+ --+2(n—1) =n*—n4 2 parts.

277. 'The total number of ways of painting the faces of a cube 6 different
colors is 6! = 720. We separate these ways of painting into classes of geometri-
cally identical ways, Since there are 24 rigid motions of a cube (6 motions take
each face into a preassigned face and 4 motions carry it into itself), each class
consists of 24 geometrically identical painting schemes. Hence the required
number of ways is 720/24 = 30.

278. 'This problem is solved in the manner of the preceding problem. The
number of ways is 4!/12 = 2.

279. There are 8!/24 = 1680 geometrically different ways.

280. There are 12!/60 ways for the dodecahedron and 20!/60 ways for the
icosahedron.

282. We must find all triples x, y, = of natural numbers such that x <<y < 3,
x+y+ 3 =40, x + y > z. These data imply that 14 <z < 19. If 2 = 19,
then x + y = 21 withx <y <{ 19. Hence 11 < y < 19 and we have 9 triangles
corresponding to 2 = 19. Similarly, for 2 = 18, 17, 16, 15, 14 we have, respect-
ively, 8, 6, 5, 3, 2 triangles. In all there are 33 triangles. The number of triangles
with perimeter 43 is 44.

283, Consider a triangle with perimeter 4n. Let x, y, 2 denote the sides of this
triangle. By adding 1 to each of the sides of our triangle, we obtain a triangle
with sides ¥ + 1, ¥ + 1, 2 + 1, thatis, a triangle with perimeter 4n 4 3. In
addition, we have the » + 1 triangles whose sides are, respectively,

(L,2n+1,22+1), @2m2n+1),..,(n+1,n+1, 22+ 1)

284, Let N = 12n. We must find the number of triples of natural numbers
%, v, 2 such that x <y <z, 8+ ¥+ 2 = 12n, ¥ + y > 2. These data imply
that 4n < 2 < 6n — 1. If 2 = 2k, then x + y = 12n — 2k and the number of
solutions of this equation withx <y <2 = 2kis3k — 6n 4 1.1If 2 = 2% + 1,
then the corresponding number of solutions is 34 — 6z + 2. Hence the number
of triangles is

3n-1 3n—-1

Y Bk—6n+ 1)+ > (3k—6n+2)=3n2

k=2n k=2n

The remaining cases are analyzed in a similar manner. In going from N to
N + 3, we can argue as in the solution of Problem 283.

285. We show that there are exactly » routes passing through every stop.
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Let ! be one of the routes and let B be a stop not on the route / (Fig. 37). In view
of condition (1), we can go by direct route from B to each of the n stops 4, ,..., 4,
of the route /. Also, in view of condition (2), each of the routes through B passes
through one of the stops 4, ,..., 4, (otherwise there would be at least one route

B

AT T T &

Fic. 37

through B fromwhich one could not transfer to the route /) and only through one
(otherwise there would be a route through B from which one could transfer to the
route / at two stops). Again, no two of the routes through B pass through the
same stop on the route / (otherwise the two routes would have two stops in
common and one could transfer from one of those routes to the other at two
stops). It follows that the number of routes through B is equal to the number of
stops on [/, that is, #.

It remains to show that there are exactly » routes through each of the stops
A, ..., A, on the route /. For this it suffices to show that for each of these stops
there is a route [’ not passing through it (then the stop in question would be
related to the route /” in the same way in which the stop B is related to the route /).
Since there are at least two routes, it follows that in addition to the route / there is
some route {” which intersects the route / in a unique point, say 4, (Fig. 38).

Fic. 38



Answers and Hints 255

Then the stops A4, ,..., 4, are not on the route /”, and we may therefore conclude
that there are exactly # routes passing through each of them. Suppose B is a stop
on [” different from A, . The route connecting B and 4, does not pass through
A, . This implies that there are exactly z routes passing through 4, .

Since there is a route which does not pass through any preassigned stop and
there are exactly # stops on each route, there are exactly 7 routes passing through
each stop. Consider a particular stop I. Through each of its # stops there pass
n — 1 routes other than the route / and in view of condition (2) no two of these
routes have an additional stop in common (otherwise two routes would have two
stops in common). Also, each route belongs to the set of routes just mentioned.
It follows that there are altogether n(n — 1) + 1 routes.

286. Suppose there are exactly » stops on a route /. The solution of Problem
285 tells us that there are exactly #n routes through any stop B not on the route .
We show that there are exactly n stops on any route !’ different from /. By
condition (3) there are at least three stops on !’ and by condition (2) only one of
these stops can be a stop on the route /. There are n — 1 stops on the route /
which are not on the route I’. We claim that there is an additional stop which is
neither on /" nor on /. Let 4, be one of the # — 1 stops on / not on /" and let C;
be one of the stops on I’ not on I (there are at least two such stops). By condition
(1) there is a route !” passing through 4, and C, , and by condition (3) there is at
least one stop C; on !” which is different from 4, and B, . This stop is neither on
!’ nor on [. The solution of Problem 285 tells us that there are n routes through the
stop B, . Each of these n routes intersects the route !’ in a unique point. On the
other hand, there is at least one route linking each stop on [’ to the stop B, . Hence
the number of stops on I’ is equal to the number of routes through B, , that is, 7.

The solution of Problem 285 implies that under the circumstances the number
of routes is n(n — 1) + 1. In our case this number is 57. The equality
n(n — 1)+ 1 =n*—n 4 1 = 57 implies that » = 8.

287. 'Thisis possible. We consider 10 lines in the plane no two of which are
parallel and no three of which are concurrent and regard the lines as bus routes
and the points of intersection of the lines as bus stops. Also, we say that one can
travel from one stop to another directly or by transfer according as the two stops
are on the same line or on different lines. Even if we remove 1 of our lines, it is
still possible to go from any one stop to any other stop with the aid of at most
one transfer. If we remove 2 of our lines, then there is a stop, namely the point
of intersection of the rejected lines, which cannot be reached from any of
the remaining routes and, conversely, there is no way of getting from this stop to
any other stop.

288, A sphere can be tangent to a plane on one of two sides. It can be tangent
to another sphere either externally or internally. Hence the answer to our problem
is 24 = 16.
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289, Let A be one of the 3 given points. Each of the m lines through 4
intersects 2m lines. Hence the lines through A intersect the remaining lines in
2m? points. The total number of points of intersection (exclusive of the 3 given
points) is 3m?.

290. Let 4,,..., A, be the m coplanar points and B, ,..., B,,_,, the remaining
points. Each plane is determined by three points. Three of the given points may
include 0, 1, 2, or 3 of the points 4, ,..., 4,, . It follows that the number of
admissible planes is

1+CiC , +CC, +C3 .

291. 'There are n 4 p points of intersection on each line through 4, m + p
points of intersection on each line through B, and m -+ n points of intersection
on each line through C. The total number of points of intersection is therefore
equal to

i[m(n 4 p) + n(m 4 p) + p(m + n)] = mn + mp + np.

Of these, 3 points can be selected in CJ, ..., Ways. However, mC3,  +
nC3 ., + pC3, .. of these triples of points are collinear. Hence the number of

triangles is

3 3 3
C?nn+mp+m: —mChp —nChyy — PChin -

292, The first vertex of our triangle can be chosen in 7 ways. Call this vertex
A. The remaining 2 vertices must be chosen out of the » — 3 vertices of our
n-gon not adjoining 4. Also, these 2 points must not be adjoining vertices of our
n-gon. Such a choice of the 2 points can be effected in P(n — 6, 2) = C2_, ways
(see p. 000). Since each of the 3 vertices of the triangle can be regarded as the
vertex A, the number of triangles is

n

n(n — 4)(n — 5)
3 .

Cfx—l& = 6

293, We separate the triangles into two classes. In one class we put triangles
whose vertices lie on different lines and in the other we put triangles with 2
vertices on the same line. There are p*C? triangles in the first class (there are
C3 triples of lines containg the vertices, and for any triple of lines there are p?
ways of choosing the 3 vertices). There are p?(p — 1) n(n — 1)/2 triangles in the
second class (we choose the line containing the 2 vertices, then we choose 2
points on this line, then we choose a line containing the third vertex and a point
on that line). The total number of triangles is

3,3 2 _ nn—1)p(pn 4 p —3)
FCE 4 18 — Unln — 1) = ! .
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294, Each interior point of intersection of the diagonals is uniquely deter-
mined by the choice of 4 vertices of the n-gon (the 4 end points of the intersecting
diagonals). It follows that the number of interior points of intersection of the
diagonals is C4 . We compute the number of all the points of intersection of the
diagonals). The number of diagonals issuing from each vertex is # — 3. 'This gives
a total of n(n — 3)/2 diagonals. Each diagonal AB intersects all the diagonals
connecting vertices different from 4 and B. Hence the diagonal 4B intersects the
remaining diagonals in

n(n — 3)
2

—2(n—3)+1=("_3)2(”_4)+1

points. Since the number of diagonals is n(n — 3)/2, it follows that the diagonals
intersect in

n(n — 3)[(n — 3)n — 4) + 2]
8

points. Subtracting the number of internal points of intersection, we obtain for
the number of external points of intersection the figure of

n(n — 3)(n — 4)(n — 5)
12 )

295. Each r-gon is determined by choosing an 7-sample of the # given points.
Cyclic permutation of the points of the sample as well as reversal of the order in
the sample yield an 7-sample which determines the same r-gon. Hence the
number of »-gons is A7 /2r. It follows that the number of all polygons
18 > 5 A7 /2r. The number of convex polygonsis >~ , Cr.

296. m parallel lines divide the plane into m + 1 strips. Each new line adds a
number of regions equal to the number of parts into which it is divided by its
predecessors. Hence the number of regions is

n(2m +n + 1) om

m+1+(m+1)+ -+ (m+n) = 5

+ 1.

297. We separate the circles into classes according to the number of the 5
given points they contain, One circle (the given one) contains all of the 5 points,
C2C} circles contain 2 of these points, C3Cj contain 1 of these points, and C3
circles contain none of these points. The total number of circles is

1 + CiC; + CXC2 + C3 = 156.
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298. Each set of 3 of our lines determines 4 circles which are tangent to them.
Hence the number of circles is 4C3, = 480.

299, We choose s successive vertices A4, ,..., 4, of our n-gon and separate the
admissible k-gons into two classes. In the first class we put all those 2-gons which
have a vertex belonging to the set {4, ,..., 4.}. In the second class we put the
remaining k-gons. Next we subdivide the &-gons in the first class into subclasses
according to which of the points A4, ,..., 4, they share. It is clear that these
subclasses are disjoint.

We compute the number of 2-gons in the subclass associated with a point 4,, .
We ignore the vertex A,, and the following (in the clockwise sense) s vertices of
our n-gon (none of these s vertices is a vertex of our k-gons). From the remaining
n — s — 1 vertices of the n-gon we must select # — 1 vertices of our k-gon so
that any selected vertex is followed by at least s vertices which are not selected.
This can be done in C¥~% | ways (see Problem 250). This is also the number of
k-gons in the subclass determined by 4, . Hence the number of k2-gons in the
first class is sC*% ;.

To compute the number of k-gons in the second class, we cut the circle
between the vertices 4, and A, ;. For each of our k-gons we must select %
vertices so that each is followed by at least s vertices which are not selected (this
condition rules out the vertices 4, ,..., 4;). This can be done in C¥_,  ways.

Hence the total number of admissible 4-gons is
- k
scﬁ—}cs—l “" C —ks *

300. Each parallelogram is determined by 2 pairs of parallel lines. Hence the
answer is (CZ, )2

301. Let the vertices of the n-gon be 4, ,..., 4, . We draw all the diagonals
through the vertex A4, , then all the diagonals through A4, ,..., all the di'agonals
through 4, . The number of new regions introduced by a particular diagonal is
equal to the number of segments into which the preceding diagonals divide the
diagonal in question, that is, one more than the number of its (internal) points
of intersection with these diagonals. Since each point of intersection comes up
exactly once, the number of regions at each step is one more than the number of
diagonals and points of intersection (the “one more” is due to the fact that we
have one region in the absence of any diagonals). Since the number of diagonals
is 7(n — 3)/2 and the number of their internal points of intersection is C% (see
Problem 294), it follows that the required number of regions is

14 n(n2— 3) n nn —1)n —2)(m —3) _ n(n —3)(»* — 3n { 14)

24 24 +1
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302, Suppose n even, n = 2k. Then 7 can be written as a sum of 2 terms in
the following ways:

n=14Qk—1)=24Qk—2) ==k} k

A card with the number 1 can be withdrawn in 1 way, a card with the number 2
in 2 ways, and so on. T'wo cards with the number £ > 1 can be withdrawn in C?2
ways. Hence the sum » = 2k can be obtained in

12k — 1) + 22k — 2) + - + (& — Dk + 1) + &1

2
= BE—1) 2B —1)  n(nt—4)
D e e S

ways. In n is odd, n = 2k — 1, then
n=14+2k—2)=24+2k—3)='=(k— 1)+ k4
and the corresponding number of ways is

Y sk —s—1)= k(k_l)sfzk_l) — 2 —1).

s=1

303. Consider a selection with & of the 7 like objects. Thhis selection contains
n — k different objects selected out of 2z + 1 different objects. Such a selection

can be obtained in C2 % ways. Summing on k, we obtain the answer

. e 1 2n+1 .
Czn+1 + Czn-:l + -+ C'gn+1 = 3 Z C;cnﬂ = 2%,
k=0
304, Let the terms of the progression be a, a4+ d, a -+ 2d. Then

a + 2d < 2n. For a given d, this inequality has 2n — 24 solutions. Hence the
total number of solutions is

2n—2)+@2n—4)+ - +2=mn(n— 1)

By reversing the increasing progression a, a + d, a + 2d we obtain the decreasing
progression @ + 2d, a + d, a. Hence the number of progressions is 2n(n — 1).
The corresponding number for the sequence 1, 2,..., 2n + 1, is 2n%

305. The proof is by induction on the number s of curves. For s = 1, the
conclusion is obvious since there are no points of intersection and the number of
regions is 1. Suppose the assertion true for s curves. This means that if the s



260 Answers and Hints

curves have n, points of intersection of multiplicity 2 (the multiplicity of a point
of intersection is the number of curves which intersect at the point), #; points of
intersection of multiplicity 3, and so on, then the number of regions described in
the statement of our problem is 1 + n, + 213 + -+ + rn, + . Now consider
an additional curve (this brings the total of curves to s + 1) which intersects the
s curves in k, points of multiplicity 2, 23 points of multiplicity 3,..., k.., points of
multiplicity # + 1,.... Then the new curve intersects the s old curves in
ky + ky + -+ + k.3 + -+ points. These points divide the new curve into
ky + ky + - + ky;q + -+ parts. Each of these parts corresponds to a new
region. Hence the number of regions is now equal to

) Atmttmat )ttt kgt ).

Observe that if the new curve passes through a point of intersection of the original
curves of multiplicity 7, then the multiplicity of this point is changed to » 4 1.

Let 7, denote the number of points of intersection of multiplicity 7 in the new
system of curves. Thenn, = n, — k, ; + &, (the number of points of multiplicity
7 in the old system must be decreased by the number of points whose old
multiplicity » was changed to » 4 1 and increased by the number of points whose
old multiplicity » — 1 was changed to 7). But then

1+ 205+ o g+
=14 (ny—hy + k) + 2Ang—ky + k3) + -+ +r(mpy— Rppo + Rrpa) + -
= (1 + ny + 2n5 £ -+ + N ) + (kz + k- + k'r+1 =+ -+

This equality states that 1 4 75 4 2n3 + - + 7n, ; + - is equal to the number
of regions associated with the s + 1 curves (see relation (*)). This completes the
proof.

306. The lines of the first pencil divide the plane into 2m regions. The first
line of the second pencil intersects all the # lines of the first pencil and so
contributes 7 + 1 new regions. Each of the remaining # — 1 lines of the second
pencil intersects the preceding lines in m 4 1 points and so contributes m + 2
new regions. Hence the total number of regions is

2m+m+1+n—1)m+2)=nm—+ 2n + 2m — 1.
307. No, since the number of connecting lines would be 77 - 15/2.

308. The sum of the coefficients is equal to the value of our expression for
x =y =g =1, that is, —1.

309. The largest number of balls among which there are no 15 balls of one
color is 74 (10 white, 10 black, 12 yellow, 14 red, 14 green, and 14 blue). Any
selection of 75 or more balls is certain to include 15 balls of one color.
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310. We classify the painting schemes in accordance with the number of
white faces. There is 1 scheme with no white faces and 1 scheme with 1 white
face. There are 2 schemes with 2 white faces: either the 2 white faces have an
edge in common or are parallel. There are 2 schemes with 3 white faces: either
the 3 white faces have a common vertex or 2 of them are parallel. The remaining
cases can be reduced to the cases already considered by changing ‘“white” to
“black.” In all, we obtain 1 +1+2+2+ 2+ 1+ 1 = 10 geometrically
different ways of painting.

311. Thereis 1 scheme with no white vertices, 1 scheme with 1 white vertex,
3 schemes with 2 white vertices (the 2 white vertices are on the same edge, on the
same diagonal of a face, or on the same diagonal of the cube), 3 schemes with 3
white vertices, and 5 schemes with 4 white vertices (see Fig. 39). The remaining

cases can be reduced to the cases already considered by changing “white” to
“black.” Thereareinall1 +14+34+3+54+3+3+ 1+ 1 =21 ways of

painting.
312, Eleven different cutouts. See Fig. 40.

313. Exactly 4. For proof see Problem 42 in “A Hundred Problems in
Elementary Mathematics” by H. Steinhaus published in 1964 by Basic Books,
New York.

314. SeeProblem 44 in “A Hundred Problems in Elementary Mathematics”
by H. Steinhaus (see above).*

315. We prove first that after 2” units of time there remain only 2 particles

* The English translation of the Steinhaus book leaves out this problem and its (very
long) solution (Translators).
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Fic. 40

located at the points with coordinates 2® and —2". For n = 1, this is obvious.
Suppose it true for n = k. This means that after 2* units of time we have one
particle at the point —2* and one particle at the point 2%. Note that during the
next 2% — 1 steps of the process the particles derived from these two “centers”
do not interact. By the induction assumption, after 2% additional steps (that is at
time 2%+1) the particle at 2% will have been replaced by a pair of particles located
at 0 and 2*¥+1. Similarly, the particle at —2* will have been replaced by a pair of
particles located at 0 and —2*%+1, Since the two particles at the origin vanish, it
follows that after 2%+ units of time we are left with a particle at the point —2%+1
and a particle at the point 2%+, This proves our assertion for n = k£ 4 1, and
thus for all positive integral ».

In view of the result just proved, after 128 = 27 steps we are left with 2
particles, 1 at the point with coordinate 128 and the other at the point with
coordinate —128. After 129 steps we have 4 particles located at the points with
coordinates —129, —127, 127, 129.

Ifn =2% 4 2% | - 1 2% k >k, > >k, then we obtain 2° particles
located at the points with coordinates +2%1 4 2¥2 4 .- 4 2% (all combinations
of signs must be included). This assertion is easy to prove by induction on s.
We proved it earlier for the case s = 1. Suppose that it is true for s << m and that
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n =2k | 2k 4 ... | 2km After the (n — 2%=)th step, we obtain 21 particles
located at the points with coordinates 2% 4 2% 4 -+ 4 2%n-1. The minimal
distance between particles is 2¥=—1t1 Hence over the next 2*=-1 — ] steps, the
particles generated by the various “centers” do not interact, and after 2= steps
each center will have given rise to 2 particles which are removed from it 4-2%=
units. In other words, we obtain particles at the points with coordinates
4-2%1 4 --- 4 2%=_This proves our assertion for s = m, and thus for all positive
integral s.

316. To decode the word, it suffices to introduce a space before each letter
consisting of two symbols. Since the total number of possible spaces is 13 and no
space can be introduced after the 11th symbol or after the 12th symbol, it is clear
that spaces can be introduced at 11 locations. Also, a space must not be intro-
duce in 2 successive locations. If the word is to contain p two-symbol letters,
then we must introduce p spaces. This can be done in Cf, , ways.* It follows
that the 12-symbol word can be decoded in

Cls + Ch + Ch + C2 4 C3 + €7 + C§ = 233
ways,

317. There are 8 - 91 p-digit numbers written without the digit 1. This
means that there are

81+9+92+4 9 4 944 954 95 =97 — 1 = 4,782,968

numbers from 1 to 10,000,000 inclusive written without the digit 1. This is less
than 107/2.

318, There are 8 ways of setting down the first 3 symbols of a word. We show
that the maximal number of words which agree on the first 3 symbols but have
different symbols in at least 3 places is 2. In fact, consider 3 such words written
one below the other. In each of the last 4 columns of these 3 words a symbol must
appear twice. But then certain 2 of these 3 words must have the same symbol in
at least 2 of the last 4 positions. This proves that if a set of words is such that any
2 words are different in at least 3 places, then this set contains at most 16 words.
The elements of such a set are written out in Fig. 41.

319. Since p is prime, the rotated pattern coincides with the original pattern
if and only if the loop is painted one color. The remaining #? — 7 patterns form
(n? — n)/p classes of different patterns with patterns in the same class differing
only by a cyclic permutation. In all, there are (n? — n)/p + = different patterns.
Incidentally, our argument proves the so-called little theorem of Fermat, which
asserts that for p prime and integral z» the number #? — z is divisible by p.

* To see this, add a space at the end and see Problem 250 (Translators).
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FiG. 41

320, The number 1 must be placed in a corner, Suppose we place 1 in the
upper left-hand corner. Then 2 must be placed in the next horizontal or vertical
square, Suppose we place 2 in the horizontal square next to 1. Then the numbers
1, 2,..., n must be placed in the first row. After that, » + 1 must be placed in the
first square of the second row, and so on. Since the position of the number 1 can
be chosen in 4 ways and the numbers 1, 2,..., # can occupy either the first row
or the first column, the number of ways is 8.

321, Otherwise the population of Moscow would exceed 9,300,000.

322, Every choice of an odd number of objects leaves behind an even number
of objects.

323, The number of ways of changing a dollar into 2-cent and 5-cent coins
is equal to the number of nonnegative integral solutions of the equation
2x + 5y = 100. Clearly, y can take on any of the 11 even values from 0 to 20
inclusive. On the other hand, in case of the equation 3x + 5y = 100, y can take
on only the 7 values 2, 5, 8, 11, 14, 17, 20.

324. We must find the number of nonnegative integral solutions of the
equation x + 2y + 5z = 20, or equivalently, of the inequality 2y 4 5z < 20.
Clearly, = can take on only the values 0, 1, 2, 3, 4. The number of corresponding
values of y is 11, 8, 6, 3, and 1. This gives a total of 29 solutions of our original
equation,
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325. Since3=2+4+1,4=2+2,6=541,7=5+28=54+2+1,
9 = 5 + 2 4 2, our weights suffice for any number of milligrams from 1 to 9
inclusive. The same argument applies to a weight expressed in tens, hundreds,
and so on, milligrams,

326. The average value of the last digit is (0 + 2 4 4)/3 = 2; of the third
digit, 5/2; of the second digit, 5/2; of the first digit, 3. The number of our
numbers is 5+ 6+ 6 *+ 3 = 540. Hence the required sum is

540(3000 + 250 + 25 4 2) = 1,769,580.

327. 'The assertion is obvious for »r = 1. Indeed, if p < n, then the card
numbered p is shifted to 2p, and if p > =, then this card is shifted to 2p — 2n — 1,
In either case the new position of our card is the remainder in the division of 2p
by 2n + 1. Suppose our assertion true for r, that is, after » shuffles the card
numbered p is shifted to position x, where 27p = k(2n 4 1) + x. After an ad-
ditional shufflle, this card will occupy the position y, where 2x = [/(2n + 1) 4 y,
! = 0 or 1. But then

2711y = 2k(2n + 1) + 20 = (2k + D)(2n + 1) 4 y.
where y < 27t1p, Hence y is the remainder in the division of 2+! by 2n 4 1.
This proves our assertion for r = 1, 2,....
328. Follows directly from Problem 327.
329, Follows directly from Problem 327,
330. Indeed, in this case division of 2%p by 2n 4 1 yields the remainder p.

331. Indeed, in this case the card originally in position 27 will be topped by
2n — 1 even-numbered cards,

332, The assertion concerning the card 8 follows from the preceding
problem, The remaining assertions can be checked directly.

333. Under each card we write its number after a shuffle:

1 2 34 56 78 910 11 12 13 14 15 16

*
) 9 8 10 7 11 6 12 5 13 4 14 3 15 2 16 1

The permutation (*) tells us what happens to a card after a certain number of
shuffles. Thus one shuffle takes 1 into 9, a second shuffle takes it into 13, a third
shuffle into 15, a fourth shuffle into 16 and a fifth shuffle takes it back into
position 1; this can be briefly summarized in the form of the cycle (1, 9, 13, 15,
16, 1). In addition to this cycle, we have the cycles (2, 8, 5, 11, 14, 2), (3, 10, 4, 7,
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12, 3), and the cycle consisting of the number 6. Thus each cycle contains one or
five different digits. This implies that after five shuffles each card must return to
its original position. Similar reasoning applies to the remaining questions.

334. We are free to paint the squares in the first row in any of the 24 possible
ways. After that we are free to paint the unpainted three squares in the first
column in any of the possible 6 ways. It is no restriction of generality

white black red blue
black white blue red
red blue white black
blue red black white

to assume that the first row and first column have been painted in the manner
shown in the above table, Then the second row can be painted in one of the
following 3 ways: black, white, blue, red; black, red, blue, white; black, blue,
white, red. Suppose the second row is painted in accordance with the first of these
3 patterns. Then the pattern of the second column is uniquely determined and
there remain only 2 ways of painting the remaining 4 squares. The same is true
of the other 2 possible ways of painting the second row. In all, there are
4131 - 2 - 3 = 144 admissible ways of painting our squares.

335. Consider an arrangement of the 15 boys in 5 rows of 3. Each row of 3
determines 3 unordered pairs (for example, the triple a, b, ¢ determines the 3 pairs
ab, ac, be), and so an arrangement of 15 boys determines 15 pairs none of which
must appear in an alternative arrangement. Since there are Cjs = 105 ways of
selecting 2 out of 15 boys, the number of admissible arrangements cannot exceed
105/15 = 7. The following table shows that this maximum can be realized.

klo ino jmo tlm jin ik Fermn
tab jac lad nae kaf mag oah
ned mdb kbe ocg mch lce icf
mef keg ieh ifb obe ofd jde
jeh Ihf nfg khd idg nhb lbg

336. Thenumber (n%)!/(n!)**+! is an integer because it is the numberof ways of
dividing n? (different) objects into a collection of » unordered batches of =
elements each. The number (mn)!/[(m!)"n!] is an integer because it is the number
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of ways of dividing mn objects into 7 unordered batches of m elements each.
Similarly, the number (mn)!/[(n!)™m!] is an integer. As a product of integers, the
number {(mn)!/[(m!)n+1)/2 (nl)tm+1) /2132 must be an integer. Since m and n are
odd, the number (mn)!/[(m!)"+1)/2 (nl)¢m+1)/2] is a rational number whose square
is an integer. This implies that this number must itself be an integer.

337. See p. 57.
338. This number is equal to the coefficient of x™ in the polynomial
(xl + al+1 _|_ _|_ xn)p — xlﬂ(l _ xn—l+l)p (1 _ x)—ﬂ_

Using the binomial expansion, we find that the value of this coefficient is

1 1-"_1 2 2(i—n—1)
Cz—(l—l)p—l - Cpcfrr?j(l—l)(p—l)—n—l + Cpcffr?j—(l—l),’tﬂ—z)—Zn—l + -

339, Letx, y, 2 be the number of books of the first, second, and third kind,
respectively, obtained by the first person. Thenx +y + 2 = 12and 0 < o < 7,
0<Cy <8, 0<2<9. The number of admissible integral solutions of our
equation is equal to the coefficient of #!2 in the expansion of

(L4140 4 24 4 B+ £+ - 4 1),

This product can be rewritten in the form

(1 — &)1 — (1 — 9

_ 48 4% ,10 1?7
T =7 =(1—-t'—t—t"+ "+ )

X (1 4 3t + 622 + 103 4 15¢4 + --- + 91112 1 --4).

It is clear that after removing brackets we obtain as the coefficient of #2 the
number 60. This, then, is the number of ways of dividing the books.

340. Since the number of n-combinations with repetitions of n letters is
Cy.._1 , the number of letters in these combinations is 2Cy},_, . Since each letter
appears the same number of times, each letter appears C,,,_; times.

341. The sum of the two different digits on a sign must be 9. Hence the only
pairs of different digits on admissible signs are 0, 9; 1,8; 2,7; 3,6; 4,5. Each of
these pairs gives rise to 8 admissible signs (for example, the pair 1,8 gives rise to
the signs (111; 888), (118; 881), (181; 818), (811; 188), and to 4 more signs with
the same numbers in reversed order). Hence there are 5 -8 = 40 admissible
signs,
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342. The required number is 37 32  P(p, g) — 1. (We reject the empty
arrangement.) Since 3 7 , P(p, ) = P(p + 1, ¢), we have

Y Y P(pg)—1=3Pp+l,n)—1=Pm+1,n+1)—2.
p=0 g=0 p=0

343. In view of Problem 342, there are P(k+ l,n + 1) — Pk, n 4 1)
arrangements with exactly 4 white balls. Hence the required sum is

m

Y KP(k + 1,n+ 1) — Pk, n + 1)].

k=1
This expression can be rewritten as follows:

m-—1

YRPE+ Ln+1)— Y (k+ )P+ 1,n+ 1)
k=1 k=0

m—1
=mPm+ l,n+1)— Y Pk+1,n+1)
k=0
=mPm+ 1,n+1)—P(mn+2)+ 1
B mn + m — |
=1+ — Pm+1,n+1).

The corresponding sum for the black balls is computed in a similar manner.
344, The required number is equal to the sum

g E:
(g E

(p +q+ DP(p, 9)-

0

i

0q

#

P

Since

S (b +a4 VP a) = (b4 DY P )+ Y. aP(5, q)

a=0 a=0 g=1

— G+ D[P+ 1)+ X P+ 1, — 1)

=@+ DP(+ 1L+ P +2,n—1)
=(2+DP(p +2,m),
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this sum is equal to

S A DP(+2m) =3 (b+DP(p+2m)— Y P(p+2,7)

p=0 p=0 p=0
=m+1D)Pm+1,n4+2)—Pm+2,n+1)+1
. mn +m-—+n
=14+ m+n+4P(m—{—2,n—1—2).

345. 'The required answer is the sum of the answers in Problem 342 and in
Problem 344.

346. There are C2 = 21 ways of choosing 2 out of 7 people. Since each triple
a, b, ¢ determines 3 pairs ((q, ), (a, ¢), (b, ¢)), each of the 21 pairs will be
represented exactly once. Since there are 7 people and the total number of guests
on the 7 occasions is 3 - 7 = 21, each person will appear in 3 triples which have
exactly this person in common.

The number of ways of selecting 3 triples which have just a certain one of the
7 friends in common is equal to 6!/[3!(2!)3], the number of ways of grouping 6
people into 3 pairs without common elements. After that, the number of ways of
selecting 3 triples which have just a certain other one of the 7 friends in common
isequal to 4!/[2!(2!)2] — | = 2(for example, if the first friend appears in thetriples
(1,2,3), (1,4,5), (1,6,7), then the second can appear only in the triples
(2, 4,6), (2,5,7) or in the triples (2, 4, 7), (2, 5, 6)). The triples which have in
common just one of the remaining 5 friends are uniquely determined. In view of
the possibility of permuting the 7 triples, we obtain the answer

6!
@t -2 -7t = 151,200.

347. Note that C? = 10 and C? = 4. This shows that in order to have a
schedule of 7 different triples we must have at least 5 people. Since C? = 35,
there are altogether A}, ways of making up schedules of 7 different triples.
Similarly, since C§ = 20, there are 4], ways of making up such a schedule if a
certain friend is left out. Finally, since C? = 10, there are A], ways of making
up such a schedule if certain two friends are left out. Applying the principle of
inclusion and exclusion, we see that the number of admissible schedules is
Ay — T4 + 214}, -

348, If we do not reject schedules with a certain person included in all 7
triples, then we have Al schedules. The number of schedules with a certain
person included in all 7 triples is 745 (there are Cs = 15 pairs which do not
include this person), Hence the number of admissible schedules is 45, — 747 .
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349,

nl
n n-1 1 __ R —
Ap+ A7t o A=l ,+2,+ e

=l [2+ AT T a0 11)!]

On the other hand,

ent 1= n[2 4+ 5p £ +(n—11)]

1 1 1
R R R ) S R ) ) R M

+
For every natural number n > 2,

| 1 |

e A PR ) ) N IR ) P R) )
| | | 1

REED R RN ) e

o
The assertion of the problem follows.

350. The number of objects in all the samples is

nAr + (n — DAZ 4 - + AL

=l [”+_—+ THE—D) ll)l]

=(n—l)n![(l+l+2[+ -4 l))

(n— 1)
1 1 2 n—2
+n—1('_ﬁ_ﬁ_'"_(n—' 1)!)]'
It is easy to see that
1_1_2_3_._._12—2_ 1
2! 3! 41 n—1D1  (n— DI’

Since each object appears the same number of times, each object appears

N=(—)n—1) [(1+1+31!—+---+(;—;l~—1)—!]+1

times.
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On the other hand,

(m—1Dn—1De=(n—1)n—1)
1
+ 1!

! 1 1
x [IJFHLE!‘JF"'+(1:—1)NL A T

B , I 1
=(n—1n— 1! [1 + 1 —|—3[—+"‘+(n—m]
1 1
+ @ —1) [E+1z(_n+_l)_+ ]s
and therefore

N—(n—l)(n—l)!e=l—(n—l)[%—i—n(T:_-W—i—---]

n n+1 (nd1)(n+2) 2°
This proves that N = E[(n — 1)(n — 1)! ¢], as asserted.

351. See p. 59.

352. One of the 3 people gets n books. These # books can be selected in C3,
ways. Each of the remaining 2n books can be given to either of the remaining
2 people. This means that there are 227 ways of distributing these books. Since
n books can be given to any one of the 3 people, the total number of ways is
3-22CF .

353. The number of arrangements in which the letters in a certain % pairs
of like letters are not separated is

P2y 2, 1oy 1) = 25720 — k)

n—k times k times

These k pairs can be selected in C* ways. Application of the principle of inclusion
and exclusion yields the required result.

354. 'There are (n + p — k)" distributions in which % people obtain nothing.
Now use the principle of inclusion and exclusion to obtain the required result.

355. 'The number of ways of putting » different objects into » different boxes
with no box left empty is #! II; . This number is the product of »! and the
coefficient of " in the expansion of (e* — 1) in a power series. It follows that

(™ m [1 — 2+ 20 103 — 3V 115 4 -]
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is the coefficient of x” in the power series expansion of the series

(= 1) — 3 —1P 4 — 1P —F (e~ 1) 4
Since

x— da? + dad — Jat + - =1In (1 + x).

the sum of this series is [l + (e — 1)] = x. Hence for n > |, the expression
(*) must vanish.

356. There are Cy, ways of withdrawing 7 objects from 4z different objects.
Hence the answer is

(mn)!
(mly

n m n
C2nC3n Cmn =

357. We must prove the inequality
ChrrCoer < (CR)E

This is equivalent to the inequality

Cn+r)2n+7—1)(2n+ 1) < 2n(2n — 1) - (2n — 7 4+ 1)
m+rYnt+r—1D@m+1) — nn—1)-@m—r+1) °

The latter inequality follows from the fact that for 0 <<k <<n we have
(21 + R(n + k) < (2n — R)(n — k)

358. We compute the angle sum of all the triangles. The sum of the angles
with vertex at an interior point is 360°. Since the number of interior points is 500,
the corresponding angles add up to 360° - 500. The sum of the angles whose
vertices coincide with the vertices of the 1000-gon is equal to the sum of the
interior angles of the 1000-gon, that is, 180° - 998. Thus the angle sum of our
triangles is 180° - 1998. Hence the required number of triangles 1998.

359. Each player plays 4 out of the total of 5 games. Suppose that in the first
game the pair (&, ¢) plays against the pair (b, d). Then in the next 3 games the
partners of a are, respectively, b, d, e. Also, a does not play in the fifth game.
Player e plays in all games except the first. In the second and third games, e
opposes a. The partner of ¢ in the second game can be ¢ or 4, and his partner
in the third game can be b or ¢. If the partner of ¢ in the second game is d, then
his partner in the third game must be ¢ (otherwise ¢ would miss two games);
but then d must not play in the fourth game, and b and ¢ are partners (in the
fourth game). This implies that in the fifth game we have the pairs (¢, ) and
(e, b). If in the second game we choose ¢ (as a partner of ), then in the third
game we must choose & (otherwise ¢ and ¢ would be partners twice), in the fourth
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game we must choose the pair (¢, d), and in the fifth game the pair (b, ¢) must
oppose the pair (d, €). We see that after the choice of pairs in the first game we
can continue the match in 2 ways. If we consider order in the last 4 games, then
we have 2 - 4] = 48 possibilities. If we note that there are 15 ways of choosing
the players for the first game (15 is the number of ways of choosing 2 pairs and
an extra out of 5 players), then we obtain a total of 720 possibilities. If the order
of the games is disregarded, then there remain 6 possibilities.

360. The number of such polygonal lines is (C3,)? (see p. 112).

361. We number the horizontal lines and the vertical lines using the numbers
1, 2,..., n. This numbering assigns a pair of coordinates to each of the #% points of
intersection of the two families of lines. Now let (4, ,..., a,) and (b, ,..., b,) be
two permutations of the numbers 1, 2,..., n. With these permutations we form
the following two sequences of 2z points each:

(a1, b)), (ar,b), (az,bs), (as,by),...,(a,,b)
and

(@1,01), (a2,8), (az,by), (a3, b),.., (a1, by)

Each of these sequences of points defines an admissible polygonal line whose
vertices are the points of the defining sequence. Since there are (n!)? pairs of
permutations (&, ,..., @,) and (b, ,..., b,) of 1, 2,..., n, we obtain 2(n!)? admissible
curves. However, we can traverse each curve in one of two directions starting at
any one of it 2z points. This reduces the number of curves to 2(n!)?/4n = (n!)?/2n.

362. We divide the rattles into classes and put into the mth class those
rattles for which the smallest number of blue balls between two red ones is m.
For m = 0, we have 4 types of rattles (the third red ball adjoins the other two or
is separated from them by 1, 2, or 3 blue balls). For m = 1 two red balls are
separated by a blue one. The remaining red ball is separated from its nearest red
neighbor by means of 1, 2, or 3 blue balls. Hence for m = 1, there are 3 types of
rattles. Finally, for m = 2 there is just 1 type of rattle. Hence the total number of
types of rattles is 8.

363. Suppose person X in the group has m acquaintances a, ,..., @, . It is
clear from the problem that any two of the people a, ,..., a,, are strangers (since
they have X as a common acquaintance). Hence each pair (a; , @;) has an addi-
tional acquaintance other than X who is a stranger to X. Also, the additional
acquaintances associated with different pairs must be different (if someone were a
common acquaintance of different pairs (a; , @;) and (a; , 4;), then that someone
and X would share at least three common acquaintances). Hence the number of
people who are strangers to X is at least as large as the number of pairs of people
selected from among &, ,..., 4, , that is, at least equal to CZ .
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On the other hand, each person who is a stranger to X shares with X exactly
two common acquaintances who necessarily belong to the group 4, ,..., 4,, . Also,
the pairs of common acquaintances determined by different strangers to X are
different (if the same pair (4, , a;) were determined by two people, then a; and &;
would have more than two acquaintances, for they are acquainted with X). It
follows that the number of strangers to X is not greater than C2 , and thus equal
to C2 = m(m — 1)/2. But then the number n of people in the group is
1 4 m + m(m — 1)/2. If we consider the equalityn = 1 4+ m + m(m — 1)/2 as
a quadratic equation in m, then we see that this equation has a single positive root.
This shows that the number 7 of acquaintances of different people has a fixed
value.

364. We can easily verify the fact that permuting two neighboring letters
A and B has no effect on the product (it suffices to consider arrangements
AABA, BABB, and AABB). This means that we may suppose all letters 4 to be
grouped together and all letters B to be grouped together. But in this case the
assertion is obvious,

365. There is a rook in every row and column. Hence each of the numbers
a,b,c,d, e f, g, h, and each of the numbers 1,2,3,4,5,6,7, 8 enters our
product exactly once. It follows that the value of this product is 8!abedefgh.

366. Suppose 5 members of the organizing committee meet. They do not
have a key to at least one lock. Also, each of the remaining members must have
a key to any such lock. Since this is true for every group of 5 members, the
number of locks is C?, = 462. Since there are 6 keys to each lock, the number of
keys is 462 - 6 = 2772, and each member of the organizing committee has
2772/11 = 252 keys.

If the committee consists of # members and the presence of m members is
necessary and sufficient for opening the safe, then the number of locks is C™!
and the number of keys kept by each member of the committee is

[(n — m + 1)jn) C~

367. We find the maximal length of a chain with the property that after & of
its links are opened the resulting pieces can be grouped so as to give any weight
from | to n. To do this we consider the optimal location of the links to be
opened. If we open & links, then we can group them so as to get any weight from
1 to & but not £ 4 1. Hence it would be nice to have a piece of chain consisting
of £ + 1 links. Then we can put together any weight from 1 to 2k 4 1. We see
that next in line of handy weights are the weights 2(% + 1), 4(k + 1),..., 2¥(k + 1).
With all of these weights we can obtain any weight from 1 to

m— k4 [+ 1)+ 2k + 1)+ 4k + 1) + - + 2%k + 1)]
— k(B 12— 1) =26k 4 1) — 1.
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We see that if 2%k < n < 2*¥*1(k 4 1), then we can manage by opening k& links
but not by opening & — | links. In particular, since 23 - 3 < 60 <244 — 1, it
suffices to open up 3 links so as to obtain pieces of chain weighing 4, 8, 16, and
29 oz.

If we use a balance, then to & opened links we add a piece of chain
weighing 2k 4 | (by putting this weight on one scale and an appropriate number
of the open links on the other scale, we can obtain any weight from & 4 1 to 2%,
and by putting this weight and an appropriate number of open links on the same
scale, we can obtain any weight from 2k + 1 to 3k 4 1). The subsequent pieces
of chain should weigh 3(2% + 1), 9(2k + 1),..., 3%(2k 4 1). Then we can obtain
any weight from 1 to

E [k 4 1) 4 32k + 1) + = + 34k + 1)] = 3(2k + 1) 357 — 1].

In particular, for a chain weighing 60 oz. we must open 2 links and obtain pieces
of chain weighing 5, 15, and 38 oz.

368. If the remainders in the division of x by 7 are, respectively, 0, 1, 2, 3, 4,
5, 6, then the corresponding remainders in the division of ¥2 by 7 are 0, 1, 4, 2, 2,
4, 1. Hence x® + ¥ is divisible by 49 if and only if x and y are divisible by 7.
It follows that the number of ordered admissible pairs is [E(1000/7)]2 = 1422 =
20,164. The corresponding number of unordered pairs is Cryy = 10,153.

369. If the number is 10a + b, then reversing the order of the digits yields
the number 105 + a. The sum of these two numbers is 1 1(a 4 &). Since this is a
perfect square and 2 << @ + b < 18, it follows that @ + & = 1. This implies the
following 8 possibilities: 29, 38, 47, 56, 65, 74, 83, 92.

370. Three digits are arbitrary and the fourth digit can be selected in one of
two ways (depending on the remainder in the division of the 3-digit number
composed of the selected digits). This means that after the choice of one of the
4 digits the remaining digits can be selected in 62 - 2 = 72 ways. It follows that
the sum of the digits in the first columnis 72(1 4+ 2+ 3 +4 4+ 5 4+ 6) = 1512
and the sum of all the numbers is

1512 + 15,120 + 151,200 + 1,512,000 = 1,679,832.

371. The last digitis 0, 2, or 4. Each of those 3 choices involves 56 - 6 = 180
choices for the remaining digits. Hence the first column in our sum is
(0 + 2+ 4) - 180 = 1080. The corresponding count for the second column is
0+ 14 2+ 3+ 4+ 5)900 = 13,500, for the third column 135,000, and for
the last column (1 4 2 + 3 4+ 4 + 5) 108,000 = 1,620,000. Hence the required
sum is 1,769,580.



276 Answers and Hints

372. The equation x +y = & has & — | integral solutions with 1 < «,
1 < y. Hence the inequality | x | + | ¥ | < 1000 has

1000
4y (k—1) = 1,998,000

k=2

solutions with x = 0, y == 0. In addition there are 3996 solutions with just one
nonzero entry and | solution with x = 0, y = 0. The total number of solutions
is 2,001,997.

373. We call the polygons in the first class polygons with A, and the remaining
polygons, polygons without A, . By adding A, to the vertices of a polygon without
A, , we obtain a polygon with A4, ; this establishes a one-to-one correspondence
between the polygons without 4, and some of the polygons with 4, . This
correspondence does not involve triangles with 4, . Hence the class of polygons
with A4, is larger than the class of polygons without 4, .

374. 'The color of the squares reached by a knight in an even number of
moves is the same as the color of the square originally occupied by the knight.
We find it convenient to rotate the board through 45° and to represent only
squares of the relevant color with each square replaced by its center. Then the
squares our knight can reach in 2 moves are represented by the pattern of black
dots shown in Fig. 42. The number of such squares is 33. Each of these squares

e o (O o o
]

Fic, 42

is the center of a similar pattern which represents the squares reached by the
knight in the next 2 moves starting at the square in question. The union of these
patterns is shown in Fig. 43. It consists of a square containing 92 = 81 dots and
4 trapezoids each of which consists of 74 5 = 12 dots. In all we have
81 + 412 = 129 dots.

After 2n moves, we obtain a pattern consisting of a square with side 4z which
contains (4n 4 1)% dots and 4 trapezoids each of which contains

(4n— 1)+ (4n — 3) + =+ (2n + 1) = 3u2
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dots. In all we obtain
12n2 + (4n 4 1) = 28n% + 8n + |

dots. In other words, in 2» moves, n > |, the knight can reach one of
28n% + 8n + | squares.

375. The set of triples which have in common an element & is an admissible
set of triples and contains C%;, = 1,907,481 triples. We show that it is impossible
to construct a larger admissible set of triples. The proof is by contradiction.
Suppose there is an admissible set containing N > Cyys, triples and that (a, b, c)
is one of them. Since each of the remaining N — 1 triples must have an element
in common with the triple (a, b, ), there are at least (N — 1)/3 triples which
contain, say, the element a; note that (N — 1)/3 > 635,826. Among our N — 1
triples there are at most 3906 triples which contain in addition to a either 4 or ¢.
Hence our N — 1 triples must contain a triple (a, 4, €), with d = b and e =~ ¢.
Similarly, it must be possible to find triples (a, f, 2) and (a, /,) with f and g
different from b, ¢, d, e,and % and j different from b, ¢, d, ¢, f, g.

Each of our N triples must have at least one element in common with each of
the 4 triples (aq, b, ¢), (a, d, €), (a, f, g), (a, h,j). If @ were not such a common
element, then we would have a triple with four different elements. Hence a is
common to all of our N triples. Since N > C7,, we obtain a contradiction.

376. Our number consists of

9+2-90+3-900+ -+ + 890,000,000 + 9
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digits. We compute the number of zeros in the sequence 1, 2,..., 10%. We write
each of the numbers from | to 10* — 1 as a 9-digit number by preceding the
numbers with less than nine digits with an appropriate number of zeros (for
example, we write 000000003 instead of 3), and replace 10* with 000000000. As
a result we obtain 9 - 10° digits and each digit appears with the same frequency.
This means that our new sequence contains 9 - 108 zeros. This figure includes
8 - 9 zeros added to the 1-digit numbers of the original sequence, 7 - 90 zeros
added to the 2-digit numbers of the original sequence, and so on. If we delete
these added zeros, then we obtain9 - 108 — 8:9 — 7-90 — --- — 9 - 107 zeros.
It is easy to see that this number is equal to the number 2 -9 + 2 -90 4 --
+ 8 -9 - 107. This proves the assertion of the problem.

377. 1If the sum of the first 2 digits is %, then for & << 9 we have (£ + 1)
admissible numbers, and for & > 9 we have (19 — k)? admissible numbers.
Summing over & from & = | to & = 18, we obtain the answer

212 + -+ + 92) + 102 = 670.

378. Let A, denote the set of subjects in which student a received grades
of “very good.” Each of these sets contains at most 2z elements. The statement
of our problem implies that two such sets are never comparable, that is, neither
of the two sets is contained in the other. We separate these sets into classes and
put in the kth class all of the sets consisting of & elements. Let » denote the least
value of k. We are about to show that if » <Z n, then we can replace our collection
of sets with another collection of sets such that:

(a) No two sets in the new collection are comparable;

(b) The new collection contains more sets than the old one;

(¢) The new minimal value of kis7 4 1.

To do this we form out of each set in the rth class of the old collection 2n —
new sets by adding to it in all possible ways one of the 2# — r elements not in it.
We leave the remaining sets of the old collection alone. It is clear that the minimal
value of % for the collection of sets obtained in this way is » + 1. Also, it is not
difficult to see that any two sets in the new collection are not comparable. In fact,
if an unchanged set B contained a new set 4’, then it would certainly contain the
set A in the rth class from which A4’ arose by the addition of an element, and
this would contradict the nature of the old collection. Conversely, if a new set 4’
obtained from an old set 4 by the addition of an element x coincided with an old
set B, then B would contain 4, contrary to the nature of the old collection.

It remains to show that the new collection contains more sets than the old
collection. We noted above that each set 4 in the old rth class gave rise to 2n — 7
new sets. Some of these sets could easily coincide (for example, by adding ¢ to
(a, b) and a to (b, ¢), we obtain twice the set (a, b, ¢)). Nevertheless, a set of » | 1
elements can arise from a set of 7 elements in no more than r 4 1 ways. Hence, if
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the old rth class contained m elements and if they gave rise to p new sets, then
m(2n — r) < p(r + 1). Since » <<n, 2n — r >r 4+ 1. Hence, m < p, that is,
the new collection contains more sets than the old collection.

Repetition of this procedure enables us to replace all sets containing fewer
than 7 elements with sets containing # elements in such a way that condition (a)
above remains in force and the number of new sets is greater than the number of
old sets. In a similar way, it is possible to get rid of sets with more than z elements
(by successively replacing them with sets obtained by deletion of an element).
In the end we obtain a collection of sets consisting of 7 elements each and
containing more sets than the original collection. Since the number of #-combina-
tions of 27 objects is (3, , the number of sets in our newest collection is <{C}, .
But then the number of sets in our original collection 1s <<Cy;, .

379. We refer to the first m elements as elements of the first kind, and to the
last # elements as elements of the second kind. We separate all »-samples of
m + n elements into classes and put in the Ath class all those 7-samples of m + n
elements which contain exactly & elements of the first kind. We claim that the
kth class contain C¥AF A7% samples. To see this, note that there are C* ways of
selecting the positions of the elements of the first kind, 4% ways of filling the
selected positions with elements of the first kind, and A% ways of filling the
remaining r — k positions with elements of the second kind. It follows that the
number of 7-samples of m -+ n elements is 3°;_, C*AE A7=% or, to use the notation
in the problem, 3}, C¥M,.N,_, . But this is precisely the result of expanding
(M + N)7 and changing exponents to indices.

The following is another way of computing the number of samples in the kth
class: We select k elements of the first kind and » — % elements of the second

kind and permute these 7 elements in all possible ways. This can be done in

Pk r — R)ALAT" = CEak A"
ways.

380. The exponent 8 can be obtained from the exponents 2 and 3 in the
following ways: 8§ =2 4+2+4+2+4+2=2+3+4 3. Hence %% = 15(x?)* =
18(x%)! (x?)2. The coefficients associated with these two representations of x® are
P(5,4) = 126 and P(6, 1, 2) = 252 and their sum is 378 (see the multinomial
expansion formula, p. 154).

381. We have

X

I+x+ -+ +x)=

Hence the coefficient of a™ is CI\t — C7t! for m <  k, and CH for m > k.
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382. We have 17 =7 4 5 + 5. On the other hand, 18 is not decomposible
into a sum of multiples of 5 and 7. Hence the coefficient of x'7 is C3,Ct, = 3420
and the coefficient of x!® is zero.

383. We have 17T=2+2+24+24+2+24+24+3=2+2+2+
24+34+34+3=2+34+3-+3+ 3+ 3. It follows that the coefficient of
x'" in the expansion of (I 4 x? — x3)1000 js

—Clo00Ca0s — CloooCove — Cio00Cass »
and in the expansion of (I — x? 4 x3)1000 jt is
— CloosCiss + CioooCass — CioooCoos -
384, Let

(*) (1 + x4 20" = ay 4 ayx + apx® + *** + a6

We show that @, = @y, ;. We put ¥ = 1/y and multiply both sides of the
equality by y%*. Then we obtain the equality

(**) (P 4+y+ )" =ay* + apy* 14 - + a,,.
Comparison of (*) and (**) shows that @, = a,,_, , as asserted.

Next we put —x in place of x and obtain
(**%) (1 —x+ 2" = ay— ayx + ax® — =+ + a,x*".

Multiplying (*) and (***), we obtain

in
(%) (14 a4 2 = Y (— eyt — @@y + + + aag)e®.
k=0

It is clear that the expansion of the left-hand side of this equality contains only
even powers of x, so that the coefficient of x2"~1 is zero. On the right-hand side
of our equality the coefficient of &1 is

—(@glzn—1 — @y g + Axlany — 77 — Gan_14,)

= —(apa; — aya, + aya3 — *-* — aZn—lazn)'

This proves (a).
Observe that in view of (*) we can write the expansion (****) in the form

(14 0%+ o) = ag + a® + ayeh 4+ 4 G,
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Hence the coefficient of x2* in this expansion is &, . On the other hand, the
expansion (****) shows that this coefficient is equal to

A2 2 2 n_2
Ayo, — Q1Qgpy + Qoo 5 — *** + @y = 205 — 2a7 + 2a; — -+ + (—1)"a

This implies the equality (b).
We rewrite (*) in the form

(1 — 23" = (1 — x)" (@g + a1x + ax® + =+ + az,x*").

This equality implies the equality
| — Cox® 4 Cax®— -« + (—1)*Cpx®
= (1 - Crx + Clx?~ -« 4 (-1)"Cix™)ag + ax + apx® 4+ -+ + ag,x™").

If 7 is not divisible by 3, then the coefficient of x” on the right-hand side of this
equality is zero and on the left-hand side it is

a, — Cha, + Cha, g — =+ + (—1)'Cra, .

It follows that this expression has the value 0 if 7 is not divisible by 3 and the
value (—1)* CF if r = 3k. This proves (c).
If we put x = 1 in (*), then we obtain

a+a + ay + -+ ay, = 3"
If we put x = | in (***) we obtain
a— a4+ a8, — "+ ay, = 1.

Addition and subtraction of these equalities yields the relations (d).

385. 'There are C,, terms of the form &7 , 2C% terms of the form «}x; , j 7~ &,
and C? terms of the form x;x%, , £ £ f, 1 £ k, j 7~ k; in all, C} 4 2C2 | C3
terms.

386. We have
(I +x4 -4 2" 1)2 = ((x _11))2 = (x™ — 1)*(x — 1)
= (x® — 2% + 1)(1 4+ 2% + 3x2 4 -+ + ma™1 4 --2),

Hence the coefficient of «* 1s Ak + 1, if 0 <k <<n— 1, and 2n — Kk — 1, if
n<{k<2n—2 In either case, the coefficient in question is equal to
n—|n—k—1]|.
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387. Since
+1 _ n+l r r_il —1
Cfrrz+1_r_’_lcn’ Cﬂ_rc:z—ly
we can write
nm+1 1.2 nin —r)
r(r—i—l l)(c’:'_l _rr+ 1 _,
(nz B (n—|—l)n)(c,._1)2 n(n —r) .
r2 (r + )r - r¥(r + 1)

388. The number of 3-samples of z kinds of elements is #%. We separate
these samples into classes and put in the kth class all 3 samples with exactly
k different types of elements. The number of samples in the first class is Cy ,
the number of samples in the second class is 6C? (there are n ways of choosing
the repeated element, # — | ways of choosing the remaining element, and there
are three ways of permuting these elements), and the number of samples in the
third class is 43 = 6C2 . The total number of these samples is C, + 6C2 + 6C3.
This proves the first relation. To prove the second relation we use a similar
approach except that now we put in one class permutations with repetitions with
at least one element of a fixed type. Then we see that

(n+1)2—nP=1+4+6C) +6CE.

Adding these two equalities we obtain the second relation.

389. The proof i1s similar to that in Problem 388 except that we consider
4-samples of elements of # kinds.

390. Consider the equality

| \/3"_ 2 . . 277”_ 2nm .. 2nmw
(—5—1—17—) —(cosT+zsmT) = COS$ 3 + zs1n 3

By the binomial expansion, we have

0 1 i V) + U VR CU—i VIR 4 )

= B0 3cz 490k —i VAL 3C3 + )

Equating corresponding real and corresponding imaginary coefficients, we
obtain the required relations.

391. We consider the identity

(1 +x)" = Cp + Cax + Coa® 4 Cox® 4 -+ + Crx™
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and put for x successively the values x = 1, ¢, €2, where

2m

3

&£ = COS 2—;— + ¢ sin
so that &2 4 ¢ - | = 0. Then we obtain the relations
2" =Cp 4+ Cr+ Ch + - + C,
(1 4+ &)™ = Cy + Cre + Cie® + -+ 4 Cpe”,
(1 4 &)™ = €3 4 Cre® + Cre* + -+ 4 Cre™.

If % is not divisible by 3, then 1 4 &* 4 £** = 0,and if % is divisible by 3, then
1 + &* 4+ &% = 3. Therefore,

2 (14" + (1 + &) = 3(Ch 4 €1 + C + ).

Since
2mn 2mn T m
__2__ . . _ ol . . u
l +e = —¢ = (cos 3 -+ zsin 3 )—cos3+zs1n3,
1—|—s2———s——cos§—isin7§r,

it follows that
nir

2+ (1 + e+ (1 + &) =27 + 2 cos 3

Hence

0 3 i _“_l n ﬂ_
C? 4+ C® 4 C° 4 _3(2 +2 cos 3 )

Relations (b) and (c) are proved in a similar manner by considering the sums
27 + g(l + &)" + (1 + &%), 2% + (1 4 &)™ + (1 + &&)n.

Relation (d) is proved in the same way be considering the expression (1 4 7)".

392, We have

E(n/2)

l4+2"+(1—2"=2 Y C¥*
k=0

The coefficients of this polynomial are positive. Hence its values for | x| < 1
are dominated by 2%, its value for x = 1.
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393. Wehave

n

nlm—ax) 1 & e Cpa™ m + |
Ea ml (n — x)! cr E‘ocz—” cr m—n 41
and
Z": C,C, nlCy Z (x+7)!2n —x—1)!
L Cer o (2n)! & xl (n — x)!
(@2 & e (@) 2n 4]
- (271)' a:go Cm+r02n—m~r - (211)' 2n+l — n + 1 .
394. The sum on the left-hand side reduces to
Z C:'cn+k—1 = C::+n — L.
k=1
This is also the value of the sum of the right-hand side.
395. We have
Gy (=D& 22n—x— 1)
2T, e D& oW
2n " 1 "
= crt o — Cr. .
(2n — I)an_lz mzl et Cg'n—ill a:z—:l e
2yt Gt 2
(2n—2)Cr1, Crl T 4]
396. We have
® CE (n—l x(n + q — x)!
2 ce ’ (n + g)! Z (n — x)!
=1 “n+e z=1
_ (gDl S e
CEu R T
(n—Dl(g+ D! & e
T (n + q)! ;[;Z_-‘ll C:+:—w+1
_ g+ D —Dlgl oy (—=Dig+ D!
_ (n + q) C:+a (n + q) Cz+c+1
_ntgqg+l mnigt+1  mnig+1
q+1 q+2 (¢+1Dg+2)°



Answers and Hints 285

397. We have

20 (=2 & wx— Dn+ q— x)
D e

Furthermore, using the identity

x—1)=Mm+q—x+1)n+qg—x+2)
+r+ g+ Dintg—2ntqg— x4 1)

we find that our sum is equal to

i@+ Y O

—2(n+ ¢+ )¢+ D! Z Cridan

r=1

+ g+ g Y CnE]

x=1

_ (=m=2) g
- (g

—2n+q+ g+ DChign + (n + ) + ¢ + 1)Ch i3

[(g + 1)(g + Z)C:jl—-:+2

Substitution of factorials for Cpo1 , , Ci-l |, Crt leads to the required formula.
398, Wehave C*_] = (k/n) C¥* . Since

(*) (I +2)" =1+ Cx + - + Coa* + - + Cox”,

it follows that

(**) n(l + x)" = C; + =+ + kCpx* ™' + -+ + nCprx™t

(the reader familiar with the differential calculus can obtain (**) by differen-

tiating (*)).
Multiplying (*) and (**) we see that

n(l + 2" = (1 + Cox + =+ + Coa™)(C}, + -+ + nCrx™ ).

By equating the coefficients of x”~! on both sides of this equality we obtain the
required relation.
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399. The number of n-combinations with repetitions of elements of n types
is C3,_, . We separate these combinations into classes and put in the kth class
the combinations with exactly & kinds of elements. The number of combinations
in the kth class is C¥C?—¥ (there are C¥ ways of selecting the & types of elements
which appear in the combmatlons in this class, and there are C?~¥ n~-combinations
with repetitions containing elements of each of the selected % types). Hence

w1 = > CECt | Replacing CJ,_,, CE, C7—% with factorials yields the
required result

400. The relation which we are about to prove can be put in the following
form:

T 1 -2 2 -4 T
C"n+'i'—1 C Cn+'r- C. Cn+'r-5 " _Cn .

For proof, we consider r-combinations with repetitions of elements of z types
and compute in two ways the number of such combinations which consist solely
of elements of different types. On the one hand, their number is C}, . On the other
hand, the number of r-combinations with repetitions of elements of n types
which contain at least 2 elements of each of a certain k types is C575,, , ; also,
the & types can be selected in C¥ ways. Application of the principle of inclusion

and exclusion yields the desired result.

401, (a) Put S, = CL 4 2C% 4 3C3 + - + nC} . Since CF = CI*, we
have S, = nC? + (n — 1) C} + - + C*. Adding both expressions for .S, ,
we see that

28, = n[Cy + Cp + -+ + C3] = 2™n,
and therefore .S, = 2*1,
(b) In much the same way we prove that .S, = (z 4 1) 271,
() S, =m—2)2"1 4 1.
d S, =@®r+1)2~
(e) S, =0.
(f) We have
Sp=4Cr+2C + + +0C) —(Co+ Cat -+ C)=2""Tn — 2" 4 L.
(g) We have CX = CE-1 4+ C*_| . Hence
Sy = Cg——l + C'rlz—l — 2(0117,—1 + Ci_l)
+ 3(C?L—'l + Cg—l) — o+ (_l)ﬂ—lnca?:i
= Cg—l — qua—l + sz—1 — (_l)n_lcf::i .

This sumis 1 forn = 1, and O forn > 1.
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(h) This sum is equal to

1
Sn 1 [C}a+1 + C’rzz+1 + -+ CZH =

I+l |
Con41 S

n—+ 1

(i) Since C¥* = [(k + 2)(k + 1)/(n + )(n + 2)] CFt3, this sum is
equal to

1 n
S'n = (n _|_ 1)(?1 + 2) [C‘ﬁ+2 + 2C"I::+2 + o + (71 + I)Cni

: {
T IYn 1 2)

[Chsz + 2Caie + - + (n + 2)Co5
— (Cope + - + CRE)
Applying the results in (a) and (b), we get

_ 1 n+1 _ In+2 P 2”""1”_’_1
ST iy et = Ty

(j) Rewrite the sum in the form

_1
n+1’°

1

= (G — G o (I CR] =

Sy

(the expression in square brackets is 1).

(k) If nis odd, then S, = 0, and if n = 2k is even, then S, = (—1)*C,.
For proof, it suffices to multiply the expansions of (I 4+ x)® and (I — %)™ and to
find the coefficient of »* in the product.

402, The largest coefficient in the first expansion is the coefficient of a3b%*
(or a®hie®, ath?c?). Its value is P(3, 3, 4) = 4200. In the second expansion the
largest coefficient is the coefficient P(4, 4, 3, 3) of a®h%%d*.

403. The binomial expansion yields

(*) (1 —da)y 12 =1+ i (—=3)(—3) 15'_% —n+1) (—d4x)™.,

Hence the coefficient Y, of ¥ is equal to

1-3-Qu—1)-20 (0! .

Yo = n! (n!)? e
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For (I — 4x)/2 we have the expansion

!
el n.

© Yn .
LR
Since
Y, _ G, _ 2n!
1—2r  2n—1  (a1)2(2n — 1)
_ 2@t 2y
 oa[m—D  a "V
we have
(*¥) (I —dgr=1—2Y Yot 4
n ’

n=1
where we put Y, = 1.
404. (a) If we multiply the expansions (*) and (**), then we find that

| = (1 + f Ynx“)(l ) é%—ixw)

n=1

— 1+ f (Ve =2 (Va5 Vua¥a 4 o 4 5 V)]

This implies the required result.
(b) If we square the expansion (*), then we find that

(1— 40 = (1 + y Ynx“)2

n=1 .
= 1 + (YY), + Y, Yo)x + (Y, Y, + V1¥; 4 Y,V )a?
+ o+ (Y Y, + Y Y, 4 o Y, V)™
Since
(1 —4x)t =1+ 40 + 422 4 - 4 47" + -+,

we readily obtain the required equality.
(¢) Square the expansion (**),
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405, Let E denote even numbers and O odd numbers. Consider the first 4
elements of each row beginning with the third row. In the third row these
elements fit the pattern OEOE; in the fourth row, the pattern OOEQ; in the
fifth row, the pattern OEEE; in the sixth row, the pattern OOOE; and in the
seventh row, the pattern OEOE. After that the cycle of patterns is repeated
(this is so because the first 4 elements of each row are determined by the first
4 elements of the preceding row). Hence each row contains at least one even
number,

406. We show that every row of the triangle is an arithmetical progression
and that the sum of the elements equidistant from the end elements is divisible
by 1958. The proof is by induction on the number of the row. For the first row
the assertion is obvious. Suppose it holds for the nth row. Take three neighboring
elements a, @ + d, a + 2d of the nth row. These three elements determine two
definite neighboring elements of the (z + 1)th row, and their values are 2a 4 d
and 24 + 3d. This shows that the (z 4 1)th row is an arithmetical progression
with 24 the difference of neighboring terms. Let q, & be the first two elements of
the nth row and ¢, d its last two elements. Then the sum of the first and last
elements of the (n + 1)th row is (@ + b) + (¢ + d) = 2(a + d) and, by the
induction assumption, is divisible by 1958. It follows that the sum of the first and
last elements of any row is divisible by 1958. In particular this is true of the sum
of the two elements which make up the last but one row, that is, of the last
element in the table.

407. The proof is by induction on n 4 m. Assume (a) for all # and s for
which & 4+ s << #n 4+ m. Then we have

un+m = u'n+m—1 + un+m—2
= Uy Uy T+ Unthy + Uy gy g + Unlly
- un—l(um—l + um—z) + un(um + um—l) = Up Uy + Uplpyq - (*)
Since (*) is readily verified for the case when n + m = 1, it follows that (*)
holds forn +m =1, 2, 3,....

(b) The proof is by induction on k. For & = 1, our assertion is trivially true.
Suppose that u,,, is divisible by %, . In view of (*) we have

Ug+Dm = Upmim = Upm—1¥m + Upm¥mt1 »

so that %), 1s divisible by u,,, . Hence u,,,, is divisible by #,,, forn =1, 2, 3,... .
(c¢) Suppose u, and u,_ , are divisible by & £ 1. Then the same is true of
Up_y = Up.q — U, . Continuing, we arrive at the false statement that u; = | is

divisible by & =~ 1.

408. Let (a, b) denote the greatest common divisor of @ and b. The equality



290 Answers and Hints

Upin = Up_1lm + Unlhy,, shows that (u,, ., , #,) is a divisor of u,,_,u,, and, since
u, and u,_, are relatively prime, a divisor of u,, . Conversely, (u,, , #,) divides
Up.n - 1t follows that (u,, ,u,) = (4p.y ,u,). But then with n = km |- ¢, we
have (u,, , u,) = (4m , #,). Application of the Euclidean algorithm shows that
(U » Un) = Um,qy - In particular, (#1909 , Ugp0) = 19 = 55.

409. By putting enough zeros in front of the early Fibonacci numbers, we
may say that each Fibonacci number has at least 4 digits. Now we associate with
each of the 108 pairs of neighboring Fibonacci numbers u,, u; ;4 , 4, ;... ;
Ujgs_1 » U1gs » 8 digits, namely, the last 4 digits of the first number in the pair
followed by the last 4 digits of the second number in the pair. Since there are
only 108 different ordered sets of 8 digits (namely, 00000000,..., 99999999) and
not all such sets can arise from our sequence of 10® pairs of neighboring
Fibonacci numbers, it follows that our sequence of pairs must contain two pairs
(% » Umyy) and (#, , u,,), 2 > m, such that u,, and u, have the same last 4 digits,
and #,,_, and u,_ also have the same last 4 digits. But then the numbers , — #,,

and %, ., — #,,,, end in 4 zeros. Since

Up 1 — Upq = (u'n.+1 - um+1) - (un - um):

U,_; — Upy_; also ends in 4 zeros. By successive reduction of the indices we find
that 4, ., — YUm_m = Un_, ends in 4 zeros.

410, Let u,, %, 1, Uyi9,.-., tyyg be the selected numbers. If we express
them in terms of %, and #, ., , then we have

Upipg = Up + Upiy, Upig = Uy + 2Upiy, Upypy = 2Up + Uy, ,

Upis = 3un + 5u'n+1 ’ Upig = Sun + 8u'ra+1 ) Upyr = 8u, + 13un+1 .

It follows that the sum of these numbers is 2lu, + 33u,,;, . Now u, , =
13u, + 21ty , 4,19 = 21u, + 34u, ., . The inequality

Unpg <2lup, + 33, <tpy

shows that 21u, + 33u,., is not a Fibonacci number,

411. Assertion (a) is proved by induction. It is obvious for n = 1. Suppose
it holds for n. Then

Up + g + 0 Uy = Ugpyy — L.

We add u,,., to both sides of this equality. Since wuy, 5 + 4p,1 = Ugpig, We
obtain w#, + #, + *** + #gn.9g = Upy.q — 1. This comples the proof. Similar
reasoning proves (b).

Assertion (c) is also proved by induction.
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To prove (d) note that

2 _ .2 2 _ 2 _ 2
Upi1 —Uplhp g = Upig — Uy —Uplhyy = un+1(un+1 - un) — Uy = Uy g Uy — Uy .

Hence 42 ., — uu, o = (— 1) [t — uguy] = (—1)"

We prove (e) and (f) simultaneously. Both assertions are obvious for n = 1.
We suppose that they are true for n = k. With the aid of (d) we obtain the
relations

Uyl + Uty + =+ 1 Ugplaryr + UspiaMorte
— ul ., — | 4 Uy Uoprn = Uppiilopg — | = U2
= Uk ek+1¥2k+2 — Ugrr1Yon+s = Ugpio

and

Uyl + *** + UgpiiMorie T Yziero¥oria
— U2, ot Uoprolopra = Uopiolloris = Uirin — |
= Uppig okretor+g — Uontolar+a = Usi+s .

This shows that (e) and (f) hold for » = & 4 1 and thus for all n.
T'o prove (g) note that by (a) and (b), ; + ¥, + *** + #,,; = #,,.3 — 1. Now,
(g) holds for » = 1. If we make the usual induction assumption, then we have

(m+ D)uy 4 nup + - 4 2y 4 4y
=ty — B+ 3) Fthnyg — 1 = tyi5 — (1 1 4).

This completes the proof.
Assertion (h) follows readily from the equality

Ugpio — | Ugnis — |

2 + u3ﬂ+3 - 2

To prove (i) we put m = nin the formulaw, ,, = %, 1, + w4, ., . Then we
2 2 L 2 2
find that uy, = w,_ju, + Uty = Upy — U,y Similarly, uy, , = u, 4+ u, .
If we put in the same formula m = 2n, then we see that

Ugp = Up Uy T Unllan 1

2 2 2 2 3 3 3
= un—l(un+l — un—l) + un(un + un+1) = Upy + Up — Up_y -

412, Let u, <N <u,,;. Then 0 <N —u, <u, ,. Hence there is an
s<<n— lsuchthatu, <N —u, <wug,.ButthenO <N —u, —u, <u,_,,
and s — | <<n — 2. After a sequence of such steps, we find that

N=u4u+u,+ +u,

where the neighboring indices #, s, p,..., 7 differ by at least 2.



292 Answers and Hints

413. The number of ways is equal to the coefficient of x° in the expansion of

(142 4 o o)1 x4 oo (] 4w e 27)
= (1 — x**1)(1 — x7+1)(1 — ar+1)(1 — 2)~3

= (1 =" =™ - ™)1 4 3x + 622 + -+ 4 C2 4™ 4 -+).
Since p << q + r, we have p <s, ¢ <<s, 7 <s, and the coefficient in question is
given by
C:+2 — C?—p+1 _ C's—<1ﬁ+1 _ C's—'r+1

G4+ —p 1) —p)
2 2

gt D —q)  —r4 (s —7)
2 2 ‘

If we bear in mind that p 4 ¢ 4 » = 2s, then this expression reduces ultimately
tosf + s+ 1 — P2+ ¢+ %)

414. If ¢ + 7 <p, then ¢ <s, r <5, and p > 5. Therefore the required

2 2 2 - - . -
coefficient is C;, . — C; .., — C¢ .1 . This implies the required answer.

415. All the objects can be permuted in (pg + 7)! ways. Selection of
(out of p) people who obtain ¢ 4 | objects each can be accomplished in C,, ways.
Each of the permutations defines a distribution of the p + ¢ + r objects into
shares of g and ¢ + | objects, respectively. Since the result is not affected by the
order of the elements in each share, we must divide C;(pg + 7)! by

() llg + DI = (g)* (g + 1)

416. Since
i1 1 iy
Z 1 ft 11 f— Cil’ Z Z 1 e Z — 12+1
io=1 i1=1 i5=1 i=1
Furthermore,

iy i)

i3
Y X 2 l= Z Civn = Cha

ip=1 &;=1 {y=1 t=1

Hence the value of our sum is Ch1%, .

417, We separate the permutations of m white and z black balls into classes.
The class (&, ,..., k) consists of those permutations in which there are %, single
white balls, &, pairs of white balls, k, triples of white balls,..., &,, m-tuples of
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white balls. Clearly, &, + 2k, + - + mk,, = m. We compute the number of
permutations in the class (% ,..., k). Since there are n black balls, there are n + 1
places for locating groups of white balls. Of these, %, are taken up by the single
white balls, %, by the pairs of white balls,..., k,, by the m-tuples of white balls.

The number of unoccupied placesisn — &k, — - — &,, + 1. Hence the number
of ways of distributing the white balls, that is, the number of permutations in the
class (%, ,..., k) is P(ky ., by, m — Ry — --- — ky,, + 1). Since the number of

permutations of m white balls and # black balls in C", , the assertion of the

nt+m ?
problem follows.

418. (a) The roots of the characteristic equation 2 — 7r + 12 = 0 are
r, = 3, o = 4. Hence the general solution is of the form a, = C,3" |} C4".
(b) The general solution is @, = C2% + Co(—5)". (c) a, = C,(2 4 3)* +
Co(2 — 30 (d) a, = Cy(31)" + Cy(—30)". (e) v, = r, = —2. Hence a, =
(—2)* (Cy + Cyn). (f) The characteristic equation is 73 — 92 4 26r — 24 = 0.
Its roots are r, =2, r, =3, r; = 4. Hence a, = C;2"  C,3" (4.
(g) ry =7, =r3 = —1. But then aq, = (—1)" (C; + Cyn + Cyn?). (h) The
characteristic equationisr* 4+ 4 = 0. Itsroots arer, , = | 44,73, = —1 £+ 7.
Hence

a, = 22Cy(1 + i) + Cyl — i) + Cy(—1 +5)* &+ Cy(—1 — i),

419, (a) The roots of the characteristic equation 72— 57 4 6 = 0 are
7, = 2, vy, = 3, and therefore a, = C;2" 4 (C,3". Putting n = | and n = 2,
we obtain the following system of equations for C; and C, :

2C, 4 3C, =1, 4C, + 9C, = —.
The solution of this system of equations is C; =5, C, = —3, so that
a, = 52" — 3n+l,

(b) We have a, = 2%(C, 4+ Cyn). Putting successively n = 1, 2, we obtain
the system of equations C; + C, = 1, C, 4+ 2C, = 1 with solution C; = 1,
C, = 0. Hence a, = 2"

© @ = g [(—1 + i V3P 4 (—1 —i V3]
(d) a, =27 + 3 — 4n,

420, The characteristic equation 72 — 27 cosa 4+ | = 0 has roots 7, , =
cos a 4z sin o. Hence @, = Cj(cos « + ¢ sin a)® + Cy(cos « — i sin o)™ Putting
n = 1, 2, we obtain the system of equations

(Ci+ Cp)cosa+ (C; — Cy)isin « = cos a,
(€, + Cp) cos 200 4 (C;, — Cy) 2sin 200 = cos 2,
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Hence
C,=0C, =14 na, = %[(cos a + 7 sin a)® 4 (cos o — 7 sin a)”].
By Moivre’s theorem, a, = cos no.

421. For proof, we need only note that the characteristic equation

*— CHF L CH 4 - (1) =0

can be written as (r — 1)* = 0, and therefore has the root 1 with multiplicity k.
This implies that one solution of the recurrence relation is @, = n* (see p. 138).

422. a, = = - 27} Cy(—4) + C2»

ol 2

423, We have
(* (1+®?=1+4 Clx+ C>+ - + CT%™ + - + C%P,
(%) (1 + a1 =1 — Clayx + CZox® — oo 4 (—1)°C a® + -,
(%9 (14 2P =1 —CL x4 - 4 (—1)"Cr_pa™ + .

We multiply the expansions (*) and (**) and find that the coefficient of 4" in this
product is

Y (=D)"PCEC = ) (—1)°Ci CT

8 s

On the other hand, (***) shows that this coefficient is equal to (—1)* C%_, ;.

The assertion of the problem follows. Problems 424438 are solved similarly.

439. Proof by induction on .



Index

A

Arithmetical hexagon, 103
Arithmetical pentagon, 103
Arithmetical square, 92
Arithmetical triangle, 94

B
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Fibonacci numbers, 119
Figurate numbers, 92

G

Gauss, 109

General solution of recurrence relation, 135
Generalized arithmetical triangle, 97
Generating functions, 167

Graph of partition, 82

K
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Product of series, 147
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Maxwell-Boltzmann statistics, 72
Multinomial expansion, 154

Q
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